拉格朗日插值+dp

直接dp是n立方的,我们考虑优化。

dp式子为f[i][j]=f[i-1][j-1]*j*i+f[i-1][j]表示i个元素选j个的答案

然后发现最高次就是2j次,所以我们预处理出2n个点的值再用拉格朗日一插就好。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int A,n,mod;
int qmod(int a,int b)
{
int ans=;
while(b)
{
if(b&)ans=1ll*ans*a%mod;
b>>=;a=1ll*a*a%mod;
}
return ans;
}
ll f[][],inv[],las[],fac[],pre[],ans;
int main()
{
scanf("%d%d%d",&A,&n,&mod);
f[][]=;
for(int i=;i<=min(n*,A);++i)
for(int j=;j<=n;++j)
if(j)f[i][j]=(1ll*i%mod*j%mod*f[i-][j-]%mod+f[i-][j])%mod;
else f[i][j]=f[i-][j];
if(A<=n*){
printf("%d\n",f[A][n]);
return ;
}
inv[]=inv[]=fac[]=inv[]=;
pre[]=A%mod;
for(int i=;i<=n*;++i)
{
pre[i]=pre[i-]*(A-i)%mod;
fac[i]=fac[i-]*i%mod;
}
las[n*]=(A-n*)%mod;inv[n*]=qmod(fac[n*],mod-);
for(int i=n*-;i>=;--i)las[i]=las[i+]*(A-i+mod)%mod;
for(int i=n*-;i>=;--i)inv[i]=inv[i+]*(i+)%mod;
for(int i=;i<=n*;++i)
{
ll INV,FAC=;
if((n*-i)&)INV=-1ll*inv[i]*inv[n*-i]%mod;
else INV=1ll*inv[i]*inv[n*-i]%mod;
if(i>)FAC=pre[i-]%mod;
if(i<n*)FAC=FAC*las[i+]%mod;
ans=(ans+FAC*f[i][n]%mod*INV%mod)%mod;
}
printf("%lld\n",(ans+mod)%mod);
return ;
}

BZOJ2655 calc的更多相关文章

  1. BZOJ2655 Calc - dp 拉格朗日插值法

    BZOJ2655 Calc 参考 题意: 给定n,m,mod,问在对mod取模的背景下,从[1,m]中选出n个数相乘可以得到的总和为多少. 思路: 首先可以发现dp方程 ,假定dp[m][n]表示从[ ...

  2. [BZOJ2655]calc(拉格朗日插值法+DP)

    2655: calc Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 428  Solved: 246[Submit][Status][Discuss] ...

  3. BZOJ2655 calc(动态规划+拉格朗日插值法)

    考虑暴力dp:f[i][j]表示i个数值域1~j时的答案.考虑使其值域++,则有f[i][j]=f[i][j-1]+f[i-1][j-1]*i*j,边界f[i][i]=i!*i!. 注意到值域很大,考 ...

  4. BZOJ2655: calc(dp 拉格朗日插值)

    题意 题目链接 Sol 首先不难想到一个dp 设\(f[i][j]\)表示选了\(i\)个严格递增的数最大的数为\(j\)的方案数 转移的时候判断一下最后一个位置是否是\(j\) \[f[i][j] ...

  5. 2019.02.19 bzoj2655: calc(生成函数+拉格朗日插值)

    传送门 题意简述:问有多少数列满足如下条件: 所有数在[1,A][1,A][1,A]之间. 没有相同的数 数列长度为nnn 一个数列的贡献是所有数之积,问所有满足条件的数列的贡献之和. A≤1e9,n ...

  6. bzoj千题计划269:bzoj2655: calc (拉格朗日插值)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2655 f[i][j] 表示[1,i]里选严格递增的j个数,序列值之和 那么ans=f[A][n] * ...

  7. PKUSC2018训练日程(4.18~5.30)

    (总计:共66题) 4.18~4.25:19题 4.26~5.2:17题 5.3~5.9: 6题 5.10~5.16: 6题 5.17~5.23: 9题 5.24~5.30: 9题 4.18 [BZO ...

  8. 【BZOJ2655】Calc(拉格朗日插值,动态规划)

    [BZOJ2655]Calc(多项式插值,动态规划) 题面 BZOJ 题解 考虑如何\(dp\) 设\(f[i][j]\)表示选择了\(i\)个数并且值域在\([1,j]\)的答案. \(f[i][j ...

  9. 【BZOJ2655】calc(拉格朗日插值)

    bzoj 题意: 给出\(n\),现在要生成这\(n\)个数,每个数有一个值域\([1,A]\).同时要求这\(n\)个数两两不相同. 问一共有多少种方案. 思路: 因为\(A\)很大,同时随着值域的 ...

随机推荐

  1. 金融量化分析【day110】:Pandas-DataFrame读取与写入

    一.DataFrame DataFrame是一个表格型的数据结构,含有一组有序的列 DataFrame可以被看作是有Series组成的字典并且工用一个索引 1.创建方式 pd.DataFrame({' ...

  2. Spark记录-Scala函数

    Scala函数 Scala有函数和方法. Scala方法是一个具有名称和签名的类的一部分. Scala中的函数是一个可以分配给变量的完整对象. 函数定义可以出现在源文件中的任何位置. 不带参数的函数 ...

  3. bzoj千题计划263:bzoj4870: [六省联考2017]组合数问题

    http://www.lydsy.com/JudgeOnline/problem.php?id=4870 80分暴力打的好爽 \(^o^)/~ 预处理杨辉三角 令m=n*k 要求满足m&x== ...

  4. Linux命令(一)grep查询

    grep -n as test1.txt -n : 显示行号 -v: 显示没有搜索字符的一行 -i:忽视大小写  搜索字符串 模式查找

  5. rstful登陆认证并检查session是否过期

    一:restful用户视图 #!/usr/bin/env python # -*- coding:UTF-8 -*- # Author:Leslie-x from users import model ...

  6. SQL Server 索引(一)数据结构和存储结构

    本文关注以下方面(本文所有的讨论基于SQL Server数据库): 索引的分类: 索引的结构: 索引的存储 一.索引定义分类 让我们先来回答几个问题: 什么是索引? 索引是对数据库表中一列或多列的值进 ...

  7. Linux内核启动流程分析(二)【转】

    转自:http://blog.chinaunix.net/uid-25909619-id-3380544.html S3C2410 Linux 2.6.35.7启动分析(第二阶段) 接着上面的分析,第 ...

  8. oracle锁表查询,资源占用,连接会话,低效SQL等性能检查

    查询oracle用户名,机器名,锁表对象 select l.session_id sid, s.serial#, l.locked_mode, l.oracle_username, l.os_user ...

  9. AudioEffect中文API

    在Android2.3中增加了对音频混响的支持,这些API包含在android.media.audiofx包中. 一.概述 AudioEffect是android audio framework(an ...

  10. 浅谈js设计模式之代理模式

    代理模式是一种非常有意义的模式,在生活中可以找到很多代理模式的场景.比如,明星都有经纪人作为代理.如果想请明星来办一场商业演出,只能联系他的经纪人.经纪人会把商业演出的细节和报酬都谈好之后,再把合同交 ...