GCD?LCM!

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 316    Accepted Submission(s): 200

Output
T lines, find S(n) mod 258280327.
Sample Input
8
1
2
3
4
10
100
233
11037
Sample Output
1
5
13
26
289
296582
3928449
213582482
Author
SXYZ
Source
 
 
【分析】
  这题好神啊。。。又涨姿势了。。
  $$f(n)=\sum\sum [lcm(i,j)+gcd(i,j)>=n]$$
  $$=\sum_{i'}\sum_{j'}\sum_{d}[d+i'*j'*d>=n]$$
  $$=\sum_{i'}\sum_{j'}\sum_{d}[(i'*j'+1)*d>=n]$$
  $$=\sum_{i'}\sum_{j'}\sum_{d}[(i'*j'+1)*d>=n-1]-\sum_{i'}\sum_{j'}\sum_{d}[(i'*j'+1)*d==n-1]$$
  设$G(n)=\sum_{d|n}[gcd(d,\dfrac{n}{d})==1]$
  则
  $f(n)=f(n-1)-\sum_{d} G(\dfrac{n-1}{d}-1)+(2*n-1)$【后面加的是要注意i和j的范围!!!】
  $G$G是积性函数,且$G(p^k)=2$
  则可以$O(n)$筛出来。。
  然后f前面的累加,后面的nlogn处理。
  然后再累加即可。
 
 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 1000010
#define Mod 258280327 int pri[Maxn],pl,g[Maxn],t[Maxn],f[Maxn];
bool vis[Maxn]; void init()
{
memset(vis,,sizeof(vis));
pl=;g[]=;
for(int i=;i<=Maxn-;i++)
{
if(!vis[i]) pri[++pl]=i,g[i]=;
for(int j=;j<=pl;j++)
{
if(pri[j]*i>Maxn-) break;
vis[i*pri[j]]=;
if(i%pri[j]==) g[i*pri[j]]=g[i];
else g[i*pri[j]]=*g[i]%Mod;
if(i%pri[j]==) break;
}
}
for(int i=;i<=Maxn-;i++)
{
for(int j=i;j<=Maxn-;j+=i)
{
t[j]=(t[j]+g[j/i-])%Mod;
}
}
for(int i=;i<=Maxn-;i++) f[i]=(f[i-]+(*i-)-t[i-])%Mod;
for(int i=;i<=Maxn-;i++) f[i]=((f[i]+f[i-])%Mod+Mod)%Mod;
} int main()
{
init();
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
printf("%d\n",f[n]);
}
return ;
}

【有一点点容斥的东东在么?】

2017-04-27 15:28:52

【HDU 5382】 GCD?LCM! (数论、积性函数)的更多相关文章

  1. 2015多校第8场 HDU 5382 GCD?LCM! 数论公式推导

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5382 题意:函数lcm(a,b):求两整数a,b的最小公倍数:函数gcd(a,b):求两整数a,b的最 ...

  2. 数学--数论--Hdu 1452 Happy 2004(积性函数性质+和函数公式+快速模幂+乘法逆元)

    Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your ...

  3. hdu 5382 GCD?LCM! - 莫比乌斯反演

    题目传送门 传送门I 传送门II 题目大意 设$F(n) = \sum_{i = 1}^{n}\sum_{j = 1}^{n}\left [ [i, j] + (i, j) \geqslant n \ ...

  4. hdu 5382 GCD?LCM!

    先考虑化简f函数 发现,f函数可以写成一个递归式,化简后可以先递推求出所有f函数的值, 所以可以先求出所有S函数的值,对于询问,O(1)回答 代码: //File Name: hdu5382.cpp ...

  5. 积性函数,线性筛入门 HDU - 2879

    HDU - 2879HeHe 题意:He[N]为[0,N−1]范围内有多少个数满足式子x2≡x (mod N),求HeHe[N]=He[1]×……×He[N] 我是通过打表发现的he[x]=2k,k为 ...

  6. 数学--数论--HDU 5382 GCD?LCM?(详细推导,不懂打我)

    Describtion First we define: (1) lcm(a,b), the least common multiple of two integers a and b, is the ...

  7. HDU 1452 Happy 2004 (逆元+快速幂+积性函数)

    G - Happy 2004 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Subm ...

  8. HDU 1452 Happy 2004(因子和的积性函数)

    题目链接 题意 : 给你一个X,让你求出2004的X次方的所有因子之和,然后对29取余. 思路 : 原来这就是积性函数,点这里这里这里,这里讲得很详细. 在非数论的领域,积性函数指所有对于任何a,b都 ...

  9. Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和

    下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...

随机推荐

  1. 「Vue」路由

    Vue-routerrouter-link active-class类型: string默认值: "router-link-active"设置 链接激活时使用的 CSS 类名.默认 ...

  2. CSS表格均匀边框

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  3. [Apio2012]dispatching 左偏树做法

    http://codevs.cn/problem/1763/ 维护子树大根堆,当子树薪水和>m时,删除最贵的点 #include<cstdio> #include<iostre ...

  4. 测试浏览器是否支持某个CSS属性

    花了几个小时写了个API,为了兼容多种用法和测试花了不少时间,求鞭打.嘲笑和建议. <!DOCTYPE HTML> <html lang="zh-CN"> ...

  5. 【LibreOJ】#6354. 「CodePlus 2018 4 月赛」最短路 异或优化建图+Dijkstra

    [题目]#6354. 「CodePlus 2018 4 月赛」最短路 [题意]给定n个点,m条带权有向边,任意两个点i和j还可以花费(i xor j)*C到达(C是给定的常数),求A到B的最短距离.\ ...

  6. Linux笔记之如何分割文件或管道流:split

    一.简介 在Linux中合并文件可以使用cat命令,后面跟上要合并的文件然后重定向到一个新的文件中即可,甚至可以追加合并.但如果要将一个大文件分割为多个小文件应该如何操作呢? 在Linux的coreu ...

  7. 为什么mysqlbinlog --database选项不起作用

    群里看到有同学提问,多瞅了眼 [root@mysql55 mysql]# mysqlbinlog --no-defaults -vv --base64-output=decode-rows mysql ...

  8. yui压缩JS和CSS文件

    CSS和JS文件经常需要压缩,比如我们看到的XX.min.js是经过压缩的JS. 压缩文件第一个是可以减小文件大小,第二个是对于JS文件,默认会去掉所有的注释,而且会去掉所有的分号,也会将我们的一些参 ...

  9. mongoexport导出csv中文乱码

    在用mongoexport导出csv文件时,发现数据库中的中文在excel中都显示为乱码,用notepad打开则正常. 解决办法: 在notepad中,将编码格式改为UTF-8,保存,再用excel打 ...

  10. linux网桥浅析

    linux网桥浅析 原文链接:http://hi.baidu.com/_kouu/item/25787d38efec56637c034bd0 什么是桥接?简单来说,桥接就是把一台机器上的若干个网络接口 ...