一.调用方法

X=FFT(x);
X=FFT(x,N);
x=IFFT(X);
x=IFFT(X,N)

用MATLAB进行谱分析时注意:

(1)函数FFT返回值的数据结构具有对称性。

例:
N=8;
n=0:N-1;
xn=[4 3 2 6 7 8 9 0];
Xk=fft(xn)


Xk =

39.0000           -10.7782 + 6.2929i        0 - 5.0000i   4.7782 - 7.7071i   5.0000             4.7782 + 7.7071i        0 + 5.0000i -10.7782 - 6.2929i

Xk与xn的维数相同,共有8个元素。Xk的第一个数对应于直流分量,即频率值为0。

(2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。在IFFT时已经做了处理。要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。

二.FFT应用举例

例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。采样频率fs=100Hz,分别绘制N=128、1024点幅频图。

clf;
fs=100;N=128;   %采样频率和数据点数
n=0:N-1;t=n/fs;   %时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号
y=fft(x,N);    %对信号进行快速Fourier变换
mag=abs(y);     %求得Fourier变换后的振幅
f=n*fs/N;    %频率序列
subplot(2,2,1),plot(f,mag);   %绘出随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('N=128');grid on;
subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('N=128');grid on;
%对信号采样数据为1024点的处理
fs=100;N=1024;n=0:N-1;t=n/fs;
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号
y=fft(x,N);   %对信号进行快速Fourier变换
mag=abs(y);   %求取Fourier变换的振幅
f=n*fs/N;
subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('N=1024');grid on;
subplot(2,2,4)
plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('N=1024');grid on;

运行结果:

fs=100Hz,Nyquist频率为fs/2=50Hz。整个频谱图是以Nyquist频率为对称轴的。并且可以明显识别出信号中含有两种频率成分:15Hz和40Hz。由此可以知道FFT变换数据的对称性。因此用FFT对信号做谱分析,只需考察0~Nyquist频率范围内的福频特性。若没有给出采样频率和采样间隔,则分析通常对归一化频率0~1进行。另外,振幅的大小与所用采样点数有关,采用128点和1024点的相同频率的振幅是有不同的表现值,但在同一幅图中,40Hz与15Hz振动幅值之比均为4:1,与真实振幅0.5:2是一致的。为了与真实振幅对应,需要将变换后结果乘以2除以N。

例2:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t),fs=100Hz,绘制:
(1)数据个数N=32,FFT所用的采样点数NFFT=32;
(2)N=32,NFFT=128;
(3)N=136,NFFT=128;
(4)N=136,NFFT=512。

clf;fs=100; %采样频率
Ndata=32; %数据长度
N=32; %FFT的数据长度
n=0:Ndata-1;t=n/fs;   %数据对应的时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);   %时间域信号
y=fft(x,N);   %信号的Fourier变换
mag=abs(y);    %求取振幅
f=(0:N-1)*fs/N; %真实频率
subplot(2,2,1),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅
xlabel('频率/Hz');ylabel('振幅');
title('Ndata=32 Nfft=32');grid on;

Ndata=32;   %数据个数
N=128;     %FFT采用的数据长度
n=0:Ndata-1;t=n/fs;   %时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);
y=fft(x,N);
mag=abs(y);
f=(0:N-1)*fs/N; %真实频率
subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅
xlabel('频率/Hz');ylabel('振幅');
title('Ndata=32 Nfft=128');grid on;

Ndata=136;   %数据个数
N=128;     %FFT采用的数据个数
n=0:Ndata-1;t=n/fs; %时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);
y=fft(x,N);
mag=abs(y);
f=(0:N-1)*fs/N;   %真实频率
subplot(2,2,3),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅
xlabel('频率/Hz');ylabel('振幅');
title('Ndata=136 Nfft=128');grid on;

Ndata=136;    %数据个数
N=512;    %FFT所用的数据个数
n=0:Ndata-1;t=n/fs; %时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);
y=fft(x,N);
mag=abs(y);
f=(0:N-1)*fs/N;   %真实频率
subplot(2,2,4),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅
xlabel('频率/Hz');ylabel('振幅');
title('Ndata=136 Nfft=512');grid on;

结论:
(1)当数据个数和FFT采用的数据个数均为32时,频率分辨率较低,但没有由于添零而导致的其他频率成分。
(2)由于在时间域内信号加零,致使振幅谱中出现很多其他成分,这是加零造成的。其振幅由于加了多个零而明显减小。
(3)FFT程序将数据截断,这时分辨率较高。
(4)也是在数据的末尾补零,但由于含有信号的数据个数足够多,FFT振幅谱也基本不受影响。

对信号进行频谱分析时,数据样本应有足够的长度,一般FFT程序中所用数据点数与原含有信号数据点数相同,这样的频谱图具有较高的质量,可减小因补零或截断而产生的影响。

例3:x=cos(2*pi*0.24*n)+cos(2*pi*0.26*n)

(1)数据点过少,几乎无法看出有关信号频谱的详细信息;
(2)中间的图是将x(n)补90个零,幅度频谱的数据相当密,称为高密度频谱图。但从图中很难看出信号的频谱成分。
(3)信号的有效数据很长,可以清楚地看出信号的频率成分,一个是0.24Hz,一个是0.26Hz,称为高分辨率频谱。
        可见,采样数据过少,运用FFT变换不能分辨出其中的频率成分。添加零后可增加频谱中的数据个数,谱的密度增高了,但仍不能分辨其中的频率成分,即谱的分辨率没有提高。只有数据点数足够多时才能分辨其中的频率成分。

matlab 中fft的用法的更多相关文章

  1. MATLAB中FFT的使用方法

    MATLAB中FFT的使用方法 说明:以下资源来源于<数字信号处理的MATLAB实现>万永革主编 一.调用方法X=FFT(x):X=FFT(x,N):x=IFFT(X);x=IFFT(X, ...

  2. MATLAB中“fitgmdist”的用法及其GMM聚类算法

    MATLAB中“fitgmdist”的用法及其GMM聚类算法 作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 高斯混合模型的基本原理:聚类——GMM,MA ...

  3. MATLAB中冒号的用法

    MATLAB中冒号的用法 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ matlab中冒号代表步长,用实例来说明 >> A=[1 2 3 ...

  4. MATLAB中冒号的用法解析

    MATLAB中冒号的用法解析 1.: 表示所有的意思. (1)如:a(1,:) 表示a的第1行,示例: 结果: 同样的如果a(2,:)表示a的第2行 (2)反过来,a(:,2) 表示a的第3列,示例: ...

  5. MATLAB中mean的用法

    https://blog.csdn.net/wangyang20170901/article/details/78745587 MATLAB中mean的用法 转载仙女阳 最后发布于2017-12-07 ...

  6. matlab中fft快速傅里叶变换

    视频来源:https://www.bilibili.com/video/av51932171?t=628. 博文来源:https://ww2.mathworks.cn/help/matlab/ref/ ...

  7. MATLAB中fft函数的正确使用方法

    问题来源:在阅读莱昂斯的<数字信号处理>第三章离散傅里叶变换时,试图验证实数偶对称信号的傅里叶变换实部为偶对称的且虚部为零.验证失败.验证信号为矩形信号,结果显示虚部是不为零且最大幅值等于 ...

  8. matlab中图像处理常见用法

    一. 读写图像文件 1. imread imread函数用于读入各种图像文件,如:a=imread('e:/w01.tif') 注:计算机E盘上要有w01相应的.tif文件. 2. imwrite i ...

  9. [转载]Matlab中fft与fftshift命令的小结与分析

    http://blog.sina.com.cn/s/blog_68f3a4510100qvp1.html 注:转载请注明出处——by author. 我们知道Fourier分析是信号处理里很重要的技术 ...

随机推荐

  1. apt install yum失败

    解决办法:sudo apt-get update

  2. Python之路(第二篇):Python基本数据类型字符串(一)

    一.基础 1.编码 UTF-8:中文占3个字节 GBK:中文占2个字节 Unicode.UTF-8.GBK三者关系 ascii码是只能表示英文字符,用8个字节表示英文,unicode是统一码,世界通用 ...

  3. GBDT-梯度提升树

    随机森林:bagging思想,可以并行,训练集权值相同 可以是分类树,回归树 输出结果(分类树):多数投票         (回归树):均值 减少方差 对异常数据不敏感 GBDT:拟合损失函数 boo ...

  4. js Array 方法总结

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  5. 字符串匹配 - sunday算法

    常见的字符串匹配算法有BF.KMP(教科书中非常经典的).BM.Sunday算法 这里主要想介绍下性能比较好并且实现比较简单的Sunday算法 . 基本原理: 从前往后匹配,如果遇到不匹配情况判断母串 ...

  6. ajax之Content-Type决定form-data方式提交还是request-payloud等

    1.post请求的Content-Type为application/x-www-form-urlencoded,参数是在请求体中,即上面请求中的Form Data. 在servlet中,可以通过req ...

  7. Flex 排序 SortField and Sort

    部分代码 var arrayOfCat:ArrayCollection=outerDocument.getCagegory();   // 需要排序的数组 //创建SortField对象 var so ...

  8. WebSocket 处理事件

    WebSocket 是 HTML5 开始提供的一种在单个 TCP 连接上进行全双工通讯的协议. WebSocket 使得客户端和服务器之间的数据交换变得更加简单,允许服务端主动向客户端推送数据.在 W ...

  9. 解决Oracle+Mybatis批量插入报错:SQL 命令未正确结束

    Mybatis批量插入需要foreach元素.foreach元素有以下主要属性: (1)item:集合中每一个元素进行迭代时的别名. (2)index:指定一个名字,用于表示在迭代过程中,每次迭代到的 ...

  10. c# 得到list符合某条件的索引值,排序

    请教,在List集合中怎么得到元素的索引值,参考:http://www.myexception.cn/c-sharp/385022.html 这个可以用来读取窗口的多个textbox控件中内容: -- ...