题目链接:Inversion Counting

题意:

   定义数列{ai|i=1,2,...,n}的逆序对如下:对于所有的1≤j<i≤n,若ai<aj,则<i,j>为一个逆序对。于是,对于一个数列a[1..n],给定m次操作。对于每一次操作,给定l,r(1≤l<r≤n),将序列a[l..r]倒置。求倒置后的逆序对的数量的奇偶性。

题解:

  假设现在我们有一个序列并翻转这个序列[l,r]区间里面的数。假设某个数的k值是指在这个值后面小于这个数的数的个数,其实我们可以发现对于[1,l-1]区间中所有的数的k值并没有变化,同样的对于[r+1,n]区间中的所有数的k值也没有变化。那么我们只用考虑[l,r]区间内k值的变化,对于[l,r]中的某个数x,那么x的k值等于[x,r] + [r+1,n]区间小于x的数的个数,那么后一个区间[r+1,n]的影响同样不变,那现在我们只用只用考虑[x,r]区间对x的k值的影响了,假设没有翻转前[l,r]区间k值为a,则翻转后k值为(r-l+1)*(r-l)/2 - a(可以自己验证一下~)。所以整个序列k值相当于从 k 变到了 (r-l+1)×(r-l)/2 - a,差就为(r-l+1)×(r-l)/2 - 2×a。因为2×a是偶数,对奇偶性没有影响,所以我们只用判断(r-l+1)×(r-l)/2的奇偶性,如果为奇数就会改变整个序列的k值数量的奇偶性,偶数则不变。

 #include<bits/stdc++.h>
using namespace std;
const int MAX_N = 3e3+;
int res[MAX_N][MAX_N];
int vec[MAX_N];
int main()
{
int N,M,T;
while(cin>>N)
{
memset(res,,sizeof(res));
for(int i=;i<=N;i++)
{
scanf("%d",&vec[i]);
}
int sum = ;
for(int i=;i<N;i++)
{
for(int j=i+;j<=N;j++)
{
if(vec[j] < vec[i]) sum++;
}
}
int flag = ;
if(sum%) flag = ;
else flag = ;
cin>>M;
for(int i=;i<M;i++)
{
int l,r;
scanf("%d%d",&l,&r);
int x = r-l+;
int t = (x*(x-)/)%;
flag ^=t;
if(flag) cout<<"odd"<<endl;
else cout<<"even"<<endl;
} }
return ;
}

Codeforces 911D. Inversion Counting (数学、思维)的更多相关文章

  1. 程序设计中的数学思维函数总结(代码以C#为例)

    最近以C#为例,学习了程序设计基础,其中涉及到一些数学思维,我们可以巧妙的将这些逻辑问题转换为代码,交给计算机运算. 现将经常会使用到的基础函数做一总结,供大家分享.自己备用. 1.判断一个数是否为奇 ...

  2. PJ考试可能会用到的数学思维题选讲-自学教程-自学笔记

    PJ考试可能会用到的数学思维题选讲 by Pleiades_Antares 是学弟学妹的讲义--然后一部分题目是我弄的一部分来源于洛谷用户@ 普及组的一些数学思维题,所以可能有点菜咯别怪我 OI中的数 ...

  3. Codeforces 954H Path Counting 【DP计数】*

    Codeforces 954H Path Counting LINK 题目大意:给你一棵n层的树,第i层的每个节点有a[i]个儿子节点,然后问你树上的简单路径中长度在1~n*2-2之间的每个有多少条 ...

  4. UVa10025 The ? 1 ? 2 ? ... ? n = k problem 数学思维+规律

    UVa10025 ? 1 ? 2 ? ... ? n = k problem The problem Given the following formula, one can set operator ...

  5. B. Tell Your World(几何数学 + 思维)

    B. Tell Your World time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  6. codeforces 911D

    D. Inversion Counting time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  7. 【Codeforces】CF 911 D. Inversion Counting(逆序对+思维)

    题目 传送门:QWQ 分析 思维要求比较高. 首先我们要把原图的逆序对q算出来. 这个树状数组或归并排序都ok(树状数组不用离散化好评) 那么翻转$[l,r]$中的数怎么做呢? 暴力过不了,我试过了. ...

  8. Codeforces Round #272 (Div. 2) C. Dreamoon and Sums (数学 思维)

    题目链接 这个题取模的时候挺坑的!!! 题意:div(x , b) / mod(x , b) = k( 1 <= k <= a).求x的和 分析: 我们知道mod(x % b)的取值范围为 ...

  9. Divisors of Two Integers CodeForces - 1108B (数学+思维)

    Recently you have received two positive integer numbers xx and yy. You forgot them, but you remember ...

随机推荐

  1. PowerShell管理SCOM_批量设置维护模式(上 )

    #定义存储需要置为维护模式的计算机名称列表 $serverlist = "C:\scomm\servers.txt" #定义脚本执行结果的输出位置 $server_maintena ...

  2. November 27th 2016 Week 48th Sunday

    It is never too late to be what you might have been. 勇敢做自己,永远不嫌迟. What I might have been? Experienci ...

  3. 面向对象程序设计__Task3_Calculator

    The initial part of the Calculator program 题目链接:Click Here github链接:Click Here 看到这个题目的话,想到就是有3个任务要去做 ...

  4. Python的多线程理解,转自虫师https://www.cnblogs.com/fnng/p/3670789.html

    多线程和多进程是什么自行google补脑 对于python 多线程的理解,我花了很长时间,搜索的大部份文章都不够通俗易懂.所以,这里力图用简单的例子,让你对多线程有个初步的认识. 单线程 在好些年前的 ...

  5. 翻新并行程序设计的认知整理版(state of the art parallel)

    近几年,业内对并行和并发积累了丰富的经验.有了较深刻的理解.但之前积累的大量教材,在当今的软硬件体系下.反而都成了负面教材.所以,有必要加强宣传,翻新大家的认知. 首先.天地倒悬,结论先行:当你须要并 ...

  6. VM下,装centos7系统,配置nginx的问题

    一.流程 1.先安装nginx依赖的包 (1)yum install gcc-c++ (2)yum install -y pcre pcre-devel (3)yum install -y zlib ...

  7. 将项目发布到Maven中央仓库的不完整纪要

    背景 有几个Utils性质的Jar需要跨项目引用,原本想部署私有Maven仓库,后来感觉太麻烦,索性直接发布到中央库,引用时也方便. 发布成功之后,觉得某些细节还是有必要记录一下. 资源 Sonaty ...

  8. CURL的学习和应用

    curl安装: xp下面的安装 :修改php.ini文件的设置,找到php_curl.dll //取消下在的注释extension=php_curl.dll linux下面安装: # wget htt ...

  9. Python学习之路 (二)爬虫(一)

    Python基础 基础教程参考廖雪峰的官方网站https://www.liaoxuefeng.com/ 一."大数据时代",数据获取的方式 1. 企业生产的用户数据:大型互联网公司 ...

  10. Sequelize-nodejs-3-model definition

    Model definition模型定义 To define mappings between a model and a table, use the define method.定义模型和表之间的 ...