题意

题目链接

分析

  • 考虑分治,记当前分治区间为 \(l,r\) 。

  • 枚举左端点,然后发现右端点无非三种情况:

    • 极大极小值都在左边;
    • 有一个在左边;
    • 极大极小值都在右边;
  • 考虑递推 \(l\) 的同时递推最靠右的满足最大最小值在左边的位置 \(p_1,p_2\).

  • 根据不同的情况计数即可,注意计算以 \(\rm mid\) 作为右端点的情况。

  • 总时间复杂度为\((nlogn)\)。

重点:分治算法降低复杂度的原因:根据极大极小值的不同划分数据以及?

代码

#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].last,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
#define For for(int j=1;j<=6;++j)
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int N=5e5 + 7;
const LL mod=1e9;
int n;
LL a[N],s[7][N],ans;
void add(LL &a,LL b){a+=b;if(a>=mod) a-=mod;}
LL s1(int x){
return 1ll*x*(x+1)/2%mod;
}
void fz(int l,int r){
if(l==r){ add(ans,a[l]*a[l]%mod);return ;}
if(l>r) return;
int mid=l+r>>1;LL mx=a[mid],mi=a[mid];
For s[j][mid-1]=0;
for(int i=mid;i<=r;++i){
Min(mi,a[i]);Max(mx,a[i]);
For s[j][i]=s[j][i-1];
add(s[1][i],mi*mx%mod);
add(s[2][i],(i-mid)*mi%mod*mx%mod);
add(s[3][i],mi);
add(s[4][i],mx);
add(s[5][i],(i-mid)*mi%mod);
add(s[6][i],(i-mid)*mx%mod);
}
mx=mi=a[mid];
int p1=mid,p2=mid;
for(int i=mid;i>=l;--i){
Min(mi,a[i]);Max(mx,a[i]);
for(;p1+1<=r&&a[p1+1]>=mi;++p1);
for(;p2+1<=r&&a[p2+1]<=mx;++p2);
int k1=min(p1,p2),k2=max(p1,p2);
add(ans,(s1(k1-i+1)-s1(mid-i)+mod)*mi%mod*mx%mod);
if(k1==p1){
add(ans,(s[5][k2]-s[5][k1]+mod)*mx%mod);
add(ans,(s[3][k2]-s[3][k1]+mod)*(mid-i+1)%mod*mx%mod);
}else{
add(ans,(s[6][k2]-s[6][k1]+mod)*mi%mod);
add(ans,(s[4][k2]-s[4][k1]+mod)*(mid-i+1)%mod*mi%mod);
}
add(ans,(s[2][r]-s[2][k2]+mod)%mod);
add(ans,(s[1][r]-s[1][k2]+mod)*(mid-i+1)%mod);
}
fz(l,mid-1);fz(mid+1,r);
}
int main(){
n=gi();
rep(i,1,n) a[i]=gi();
fz(1,n);
printf("%lld\n",ans);
return 0;
}

[BZOJ3745][COCI2015]Norma[分治]的更多相关文章

  1. bzoj3745: [Coci2015]Norma 分治,单调队列

    链接 bzoj 思路 首先\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}\sum\limits_{k=i}^{j}max(a_k)\)可以用单调队列求解.参见 ...

  2. 【BZOJ3745】Norma [分治]

    Norma Time Limit: 20 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description Input 第1行,一个整数N: ...

  3. bzoj3745: [Coci2015]Norma

    Description Input 第1行,一个整数N: 第2~n+1行,每行一个整数表示序列a. Output 输出答案对10^9取模后的结果. 预处理每个位置的数作为最小/大值向左延伸的最大距离, ...

  4. 【BZOJ3745】[Coci2015]Norma cdq分治

    [BZOJ3745][Coci2015]Norma Description Input 第1行,一个整数N: 第2~n+1行,每行一个整数表示序列a. Output 输出答案对10^9取模后的结果. ...

  5. 【BZOJ3745】Norma(CDQ分治)

    [BZOJ3745]Norma(CDQ分治) 题面 BZOJ 洛谷 题解 这种问题直接做不好做,显然需要一定的优化.考虑\(CDQ\)分治. 现在唯一需要考虑的就是跨越当前中间节点的所有区间如何计算答 ...

  6. BZOJ 3745: [Coci2015]Norma(分治)

    题意 给定一个正整数序列 \(a_1, a_2, \cdots, a_n\) ,求 \[ \sum_{i=1}^{n} \sum_{j=i}^{n} (j - i + 1) \min(a_i,a_{i ...

  7. BZOJ3745:[COCI2015]Norma

    浅谈离线分治算法:https://www.cnblogs.com/AKMer/p/10415556.html 题目传送门:https://lydsy.com/JudgeOnline/problem.p ...

  8. bzoj 3745 [Coci2015]Norma——序列分治

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3745 如果分治,就能在本层仅算过 mid 的区间了. 可以从中间到左边地遍历左边,给右边两个 ...

  9. bzoj 3745: [Coci2015]Norma【分治】

    参考:https://blog.csdn.net/lych_cys/article/details/51203960 真的不擅长这种-- 分治,对于一个(l,r),先递归求出(l,mid),(mid+ ...

随机推荐

  1. [控件] AngleGradientView

    AngleGradientView 效果 说明 1. 用源码产生带环形渐变色的view 2. 可以配合maskView一起使用 (上图中的右下角图片的效果) 源码 https://github.com ...

  2. How To create extension in Hybris(创建Hybris的扩展)

    How To create extension in Hybris What is an extension? An extension is an encapsulated piece of the ...

  3. PHP中抽象方法、抽象类和接口的用法

    在类中,没有方法体的方法就是抽象方法. abstract 可见性 function 方法名称(参数1,.....);      // 如果没有显示地指定可见性,则默认为public 如: public ...

  4. java Calendar日历类

    ~Calendar类是一个抽象类,为特定瞬间与一组诸如YEAR,MONTH,DAY_OF_MONTH,HOUR等日历字段之间的转换提供了一些方 法,并为操作日历字段(例如获得下星期的日期)提供了一些方 ...

  5. 在CentOS7上部署 Kubernetes集群

    yum -y install  etcd docker  flannel kubenetes 一般会遇到没有k8s源的问题,先 yum update -y 看是否有效,如果还是没用就创建yum 源,再 ...

  6. 怎样批量提取JPG照片的文件名

    用批处理做吧, @echo off dir /a-d /b >./list.txt 把上面两句代码用记事本保存为“list.bat”(不要引号) 然后把这个文件放到你要提取文件名的文件夹里,就是 ...

  7. Algorithms: Design and Analysis, Part 1 - Programming Assignment #1

    自我总结: 1.编程的思维不够,虽然分析有哪些需要的函数,但是不能比较好的汇总整合 2.写代码能力,容易挫败感,经常有bug,很烦心,耐心不够好 题目: In this programming ass ...

  8. PAT乙级1026

    1026 程序运行时间 (15 分)   要获得一个 C 语言程序的运行时间,常用的方法是调用头文件 time.h,其中提供了 clock() 函数,可以捕捉从程序开始运行到 clock() 被调用时 ...

  9. POJ 3356 水LCS

    题目链接: http://poj.org/problem?id=3356 AGTC Time Limit: 1000MS   Memory Limit: 65536K Total Submission ...

  10. Angular动态表单生成(六)

    动态表单之根据Json生成表单 我们在实际的使用中,动态表单往往是由服务器端的一系列配置,然后返回数据给客户端,最后客户端根据数据来动态的生成表单.那么怎么像我们上面所描述的这样,生成一个可以让我们的 ...