BZOJ 3527 力 | 分治

题意

给出数组q,$E_i = \sum_{i < j} \frac{q_iq_j}{(i - j) ^ 2} - \sum_{i > j} \frac{q_iq_j}{(i - j) ^ 2} $。

题解

求出减号前面一部分(设为A(i)),再求出减号后面的一部分(设为B(i))。

具体怎么求呢?还是转换成多项式乘法。

设\(f(i) = q[i]\),翻转后成为\(f'(i)\)。

设\(g(i) = \frac{1}{i^2}, g(0) = 0\)。

\[A(i) = \sum_{i = 0}^{j} f(i) * g(j - i)
\]

\[\begin{align*}
B(i) &= \sum_{i = j}^{n - 1} f(i) * g(i - j)\\
&= \sum_{i = 0}^{n - 1 - j} f(i + j) * g(i)\\
&= \sum_{i = 0}^{n - 1 - j} f'(n - 1 - i - j) * g(i)
\end{align*}
\]

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <complex>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
} const int N = 1000005;
const double PI = acos(-1);
typedef complex<double> cp; int m, n = 1;
double q[N], res[N];
cp f[N], _f[N], g[N], omg[N], inv[N]; void init(){
for(int i = 0; i < n; i++){
omg[i] = cp(cos(2 * PI * i / n), sin(2 * PI * i / n));
inv[i] = conj(omg[i]);
}
}
void fft(cp *a, cp *omg){
int lim = 0;
while((1 << lim) < n) lim++;
for(int i = 0; i < n; i++){
int t = 0;
for(int j = 0; j < lim; j++)
if(i >> j & 1) t |= 1 << (lim - j - 1);
if(i < t) swap(a[i], a[t]);
}
for(int l = 2; l <= n; l *= 2){
int m = l / 2;
for(cp *p = a; p != a + n; p += l)
for(int i = 0; i < m; i++){
cp t = omg[n / l * i] * p[m + i];
p[m + i] = p[i] - t;
p[i] += t;
}
}
} int main(){ read(m);
for(int i = 0; i < m; i++){
scanf("%lf", &q[i]);
f[i].real(q[i]);
_f[m - 1 - i].real(q[i]);
if(i) g[i].real(1.0 / i / i);
}
while(n < 2 * m) n *= 2;
init();
fft(f, omg), fft(_f, omg), fft(g, omg);
for(int i = 0; i < n; i++) f[i] *= g[i], _f[i] *= g[i];
fft(f, inv), fft(_f, inv);
for(int i = 0; i < m; i++)
res[i] = f[i].real() / n - _f[m - 1 - i].real() / n;
for(int i = 0; i < m; i++)
printf("%lf\n", res[i]); return 0;
}

BZOJ 3527 力 | FFT的更多相关文章

  1. BZOJ 3527 力

    fft推下公式.注意两点: (1)数组从0开始以避免出错. (2)i*i爆long long #include<iostream> #include<cstdio> #incl ...

  2. [BZOJ]3527 力(ZJOI2014)

    第一次背出FFT模板,在此mark一道裸题. Description 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. Input 第一行一个整数n. 接下来n行每行输入一个数,第i ...

  3. 【BZOJ】3527: [Zjoi2014]力 FFT

    [参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...

  4. bzoj3527: [Zjoi2014]力 fft

    bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...

  5. [BZOJ 3771] Triple(FFT+容斥原理+生成函数)

    [BZOJ 3771] Triple(FFT+生成函数) 题面 给出 n个物品,价值为别为\(w_i\)且各不相同,现在可以取1个.2个或3个,问每种价值和有几种情况? 分析 这种计数问题容易想到生成 ...

  6. 【BZOJ 3527】 3527: [Zjoi2014]力 (FFT)

    3527: [Zjoi2014]力 Time Limit: 30 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 2003  Solved: 11 ...

  7. BZOJ 3527: [ZJOI2014]力(FFT)

    BZOJ 3527: [ZJOI2014]力(FFT) 题意: 给出\(n\)个数\(q_i\),给出\(Fj\)的定义如下: \[F_j=\sum \limits _ {i < j} \fra ...

  8. bzoj 3527 [Zjoi2014]力——FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 把 q[ i ] 除掉.设 g[ i ] = i^2 ,有一半的式子就变成卷积了:另一 ...

  9. bzoj 3527 [Zjoi2014] 力 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 看了看TJ才推出来式子,还是不够熟练啊: TJ:https://blog.csdn.n ...

随机推荐

  1. opengl-glsl

    GLSL 着色器是使用一种叫GLSL的类C语言写成的.GLSL是为图形计算量身定制的,它包含一些针对向量和矩阵操作的有用特性. 着色器的开头总是要声明版本,接着是输入和输出变量.uniform和mai ...

  2. 零基础学Python之结构化数据(附详细的代码解释和执行结果截图)

    3结构化数据 字典(查找表).集合.元组.列表 3.1字典 是有两列任意多行的表,第一列存储一个键,第二列存储一个值. 它存储键/值对,每个唯一的键有一个唯一与之关联的值.(类似于映射.表) 它不会维 ...

  3. javascript this(上)

    javascript的this指向的是一个函数运行时动态绑定对象. this的4种常见的指向: 作为对象的方法调用 var obj={ name:"姚小白", getName:fu ...

  4. JS模块化样例

    var fn_pageBtn = (function(){ var m1 = function(){ alert(1); }; var m2 = function(){ alert(2); }; re ...

  5. 第10讲:利用SQL语言实现关系代数操作

    一.实现并.交.差运算 1. 基本语法形式:子查询 [union [all] | intersect [all] | except [all] 子查询] ①意义:将关系代数中的∪.∩.- 分别用uni ...

  6. DPDK L3fwd 源码阅读

    代码部分 整个L3fwd有三千多行代码,但总体思想就是在L2fwd的基础上,增加网络层的根据 IP 地址进行路由查找的内容. main.c 文件 int main(int argc, char **a ...

  7. J2EE 13种技术规范

    J2EE平台由一整套服务(种技术规范进行简单的描述(限于篇幅,这里只能进行简单的描述): 1.JDBC(Java Database Connectivity):    JDBC API为访问不同的数据 ...

  8. CANOpen的几种操作以及数据

    其实3年前在21ic就准备做这篇文章了,那时,CANOpen也只是刚刚在国内推广,所以几乎没有项目用到.现在有了实际的项目,完全确认了以前移植和测试的代码,所以列举一些CANOpen的底层操作以及数据 ...

  9. 30行js让你的rem弹性布局适配所有分辨率(含竖屏适配)(转载)

    用rem来实现移动端的弹性布局是个好主意!用法如下: CSS @media only screen and (max-width: 320px), only screen and (max-devic ...

  10. vim出现自动补全的问题

    当使用vim编辑文件自动补全文件名称的时候,可能会出现_arguments:451: _vim_files: function definition file not found的错误,这个时候一般都 ...