题意:

给定一个序列,询问m次,每次求出区间 [ L,R ] 有多少个不同数字。

套模板就好了。。。但我不大明白。。。。我的写法为什么不行。。。唉。。。
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
LL n, m, pos[maxn], s[maxn], c[maxn], ans; struct node
{
LL l, r, id, res;
}Node[maxn]; bool cmp(node a, node b)
{
return pos[a.l] == pos[b.l] ? (a.r < b.r) : (a.l < b.l);
} bool cmp_id(node a, node b)
{
return a.id < b.id;
} //void update(int k, int add)
//{
// if(add == 1) s[c[k]]++;
// else s[c[k]]--;
// if(s[c[k]] == 1)
// ans++;
// else if(s[c[k]] == 0)
// ans--;
//} void add(int x){
s[c[x]]++;
if(s[c[x]]==) ans++;
} void del(int x){
s[c[x]]--;
if(s[c[x]]==) ans--;
} int main()
{
ans = ;
scanf("%lld", &n);
for(int i=; i<=n; i++)
scanf("%lld", &c[i]);
int block = sqrt(n);
for(int i=; i<=n; i++)
pos[i] = (i-)/block + ;
scanf("%lld", &m);
for(int i=; i<=m; i++)
{
scanf("%lld%lld", &Node[i].l, &Node[i].r);
Node[i].id = i;
}
sort(Node+, Node++m, cmp);
for(int i=, l=, r=; i<=m; i++)
{
for(; r < Node[i].r; r++)
add(r+);
for(; r > Node[i].r; r--)
del(r);
for(; l < Node[i].l; l++)
del(l);
for(; l > Node[i].l; l--)
add(l-);
Node[i].res = ans;
}
sort(Node+, Node++m, cmp_id);
for(int i=; i<=m; i++)
printf("%I64d\n", Node[i].res); return ;
}
 

D-query SPOJ - DQUERY(模板莫队)的更多相关文章

  1. SPOJ D-query(莫队算法模板)

    题目链接:http://www.spoj.com/problems/DQUERY/ 题目大意:给定一个数组,每次询问一个区间内的不同元素的个数 解题思路:直接套莫队的裸题 #include<cs ...

  2. (原创)D-query SPOJ - DQUERY(莫队)统计不同数的数量

    A - D-query Given a sequence of n numbers a1, a2, ..., an and a number of d-queries. A d-query is a ...

  3. D-query SPOJ - DQUERY(莫队)统计不同数的数量

    Given a sequence of n numbers a1, a2, ..., an and a number of d-queries. A d-query is a pair (i, j) ...

  4. D-query SPOJ - DQUERY (莫队算法裸题)

    Given a sequence of n numbers a1, a2, ..., an and a number of d-queries. A d-query is a pair (i, j) ...

  5. luogu P4887 模板 莫队二次离线 莫队 离线

    LINK:模板莫队二次离线 很早以前学的知识点 不过 很久了忘了. 考虑暴力 :每次莫队更新的时候 尝试更新一个点到一个区间的答案 可以枚举二进制下位数为k的数字 看一下区间内的这种数字有多少个. 不 ...

  6. spoj COT2(树上莫队)

    模板.树上莫队的分块就是按dfn分,然后区间之间转移时注意一下就好.有个图方便理解http://blog.csdn.net/thy_asdf/article/details/47377709: #in ...

  7. BZOJ 2038 2009国家集训队 小Z的袜子【模板·莫队】

    [题解] 1,先说说莫队算法. 莫队算法是用来离线处理区间问题的算法.非常易于理解和使用,且运用十分广泛. 假设我们现在已知区间[L,R]的答案,如果我们能以较低的时间复杂度扩展得到区间$[L-1,R ...

  8. 洛谷 P2709 小B的询问(莫队)

    题目链接:https://www.luogu.com.cn/problem/P2709 这道题是模板莫队,然后$i$在$[l,r]$区间内的个数就是$vis[ ]$数组 $add()$和$del()$ ...

  9. SPOJ DQUERY - D-query (莫队算法|主席树|离线树状数组)

    DQUERY - D-query Given a sequence of n numbers a1, a2, ..., an and a number of d-queries. A d-query ...

随机推荐

  1. Linux中的mysql指令

    如何启动/停止/重启MySQL一.启动方式1.使用 service 启动:service mysqld start2.使用 mysqld 脚本启动:/etc/inint.d/mysqld start3 ...

  2. 私有云搭建:树莓派+kodexplorer可道云,几步搞定!

    目前蒲公英异地组网则是推出了树莓派1.0软件客户端.无需公网IP!简单60秒设置!轻松远程访问树莓派!实现远程登录.远程配置.远程访问服务.传输数据等等操作.例如:蒲公英树莓派1.0软件客户端+可道云 ...

  3. FirstWebApp

    servlet规范中定义了web应用程序的目录层次:http://localhost:8080/docs/appdev/deployment.html 第一个web应用程序 开发,并部署到tomcat ...

  4. ACM中常见错误提示解析

    Output Limit Exceeded 多数发生在递归遍历的过程中,多输出了一些内容(比如说空格).Output Limit Exceeded还指如果输入某一组数据,你的程序返回的结果是一直输出某 ...

  5. Ubuntu系统无法识别Logitech M590蓝牙鼠标的问题

    参见 - https://blog.csdn.net/yh2869/article/details/73119018 亲测可用. 系统:ubuntu 16.04 64bit 现象:鼠标配对可以成功,但 ...

  6. 机器学习算法 --- Pruning (decision trees) & Random Forest Algorithm

    一.Table for Content 在之前的文章中我们介绍了Decision Trees Agorithms,然而这个学习算法有一个很大的弊端,就是很容易出现Overfitting,为了解决此问题 ...

  7. 【RL系列】Multi-Armed Bandit笔记补充(二)

    本篇的主题是对Upper Conference Bound(UCB)策略进行一个理论上的解释补充,主要探讨UCB方法的由来与相关公式的推导. UCB是一种动作选择策略,主要用来解决epsilon-gr ...

  8. shutil模块详解

    python常用模块目录 注意:shutil经常遇到路径需要转义一下才能执行,在字符串前面加 r转义  r" " 1.shutil常用方法 import shutil# 删除目录 ...

  9. unzip/tar命令详解

    博客目录总纲首页 原文链接:https://www.cnblogs.com/zdz8207/p/3765604.html Linux下的压缩解压缩命令详解及实例 实例:压缩服务器上当前目录的内容为xx ...

  10. Spring Cloud限流思路及解决方案

    转自: http://blog.csdn.net/zl1zl2zl3/article/details/78683855 在高并发的应用中,限流往往是一个绕不开的话题.本文详细探讨在Spring Clo ...