Pascal VOC & COCO数据集介绍

Pascal VOC数据集介绍

  • Annotations
  • ImageSets
  • JPEGImages
  • SegmentationClass
  • SegmentationObject

1. JPEGImages

主要提供的是PASCAL VOC所提供的所有的图片信息,包括训练图片,测试图片

这些图像就是用来进行训练和测试验证的图像数据。

2. Annotations

主要存放xml格式的标签文件,每个xml对应JPEGImage中的一张图片

<annotation>
<folder>VOC2012</folder>
<filename>2007_000392.jpg</filename> //文件名
<source> //图像来源(不重要)
<database>The VOC2007 Database</database>
<annotation>PASCAL VOC2007</annotation>
<image>flickr</image>
</source>
<size> //图像尺寸(长宽以及通道数)
<width>500</width>
<height>332</height>
<depth>3</depth>
</size>
<segmented>1</segmented> //是否用于分割(在图像物体识别中01无所谓)
<object> //检测到的物体
<name>horse</name> //物体类别
<pose>Right</pose> //拍摄角度
<truncated>0</truncated> //是否被截断(0表示完整)
<difficult>0</difficult> //目标是否难以识别(0表示容易识别)
<bndbox> //bounding-box(包含左下角和右上角xy坐标)
<xmin>100</xmin>
<ymin>96</ymin>
<xmax>355</xmax>
<ymax>324</ymax>
</bndbox>
</object>
<object> //检测到多个物体
<name>person</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>198</xmin>
<ymin>58</ymin>
<xmax>286</xmax>
<ymax>197</ymax>
</bndbox>
</object>
</annotation>

3. ImageSets

  • Action // 人的动作
  • Layout // 人体的具体部位
  • Main // 图像物体识别的数据,总共20类, 需要保证train val没有交集
    • train.txt
    • val.txt
    • trainval.txt
  • Segmentation // 用于分割的数据

4. SegmentationObject & SegmentationClass

保存的是物体分割后的数据,在物体识别中没有用到

COCO数据集介绍

COCO数据集是微软团队获取的一个可以用来图像recognition+segmentation+captioning 数据集

这个数据集以scene understanding为目标,主要从复杂的日常场景中截取,图像中的目标通过精确的segmentation进行位置的标定。图像包括91类目标,328,000影像和2,500,000个label。

该数据集主要解决3个问题:目标检测,目标之间的上下文关系,目标的2维上的精确定位。数据集的对比示意图:

数据集分类

  • Image Classification

    分类需要二进制的标签来确定目标是否在图像中。早期数据集主要是位于空白背景下的单一目标,如MNIST手写数据库,COIL household objects。在机器学习领域的著名数据集有CIFAR-10 and CIFAR-100,在32*32影像上分别提供10和100类。最近最著名的分类数据集即ImageNet,22,000类,每类500-1000影像。

  • Object Detection

    经典的情况下通过bounding box确定目标位置,期初主要用于人脸检测与行人检测,数据集如Caltech Pedestrian Dataset包含350,000个bounding box标签。PASCAL VOC数据包括20个目标超过11,000图像,超过27,000目标bounding box。最近还有ImageNet数据下获取的detection数据集,200类,400,000张图像,350,000个bounding box。由于一些目标之间有着强烈的关系而非独立存在,在特定场景下检测某种目标是是否有意义的,因此精确的位置信息比bounding box更加重要。

  • Semantic scene labeling

    这类问题需要pixel级别的标签,其中个别目标很难定义,如街道和草地。数据集主要包括室内场景和室外场景的,一些数据集包括深度信息。其中,SUN dataset包括908个场景类,3,819个常规目标类(person, chair, car)和语义场景类(wall, sky, floor),每类的数目具有较大的差别(这点COCO数据进行改进,保证每一类数据足够)。

  • other vision datasets

    一些数据集如Middlebury datasets,包含立体相对,多视角立体像对和光流;同时还有Berkeley Segmentation Data Set (BSDS500),可以评价segmentation和edge detection算法。

Coco

COCO数据集有91类,虽然比ImageNet和SUN类别少,但是每一类的图像多,这有利于获得更多的每类中位于某种特定场景的能力,对比PASCAL VOC,其有更多类和图像。

COCO难度更大,因为coco数据集每张图片中的物体数目很多,所以导致相对别的数据集,该数据集检测的准确率很低

VOC数据集转化为COCO数据集格式

Facebook的Detectron平台只支持coco格式的数据集,所以需要将VOC格式的数据集转化为coco格式的数据集

具体过程参照:https://blog.csdn.net/meccaendless/article/details/79457330

训练detectron

训练

python2 tools/train_net.py --cfg experiments/e2e_faster_rcnn_resnet-50-FPN_pascal2007.yaml  OUTPUT_DIR experiments/output

测试

python2 tools/infer_simple.py \
--cfg experiments/e2e_faster_rcnn_resnet-50-FPN_pascal2007.yaml \
--output-dir experiments/test_out/ \
--wts ./pretrained_model/model_final.pkl \
test_demo_cow

other:(注意在训练结束后inferece时,需要将cls_score_voc以及bbox_pred_voc改回。不然会报错)

python2 tools/infer_simple.py --cfg experiments/e2e_faster_rcnn_resnet-50-FPN_pascal2007.yaml --output-dir experiments/test_out/ --wts ./experiments/output_bak/train/voc_2007_train/generalized_rcnn/model_final.pkl test_demo_cow

评估

python2 tools/test_net.py \
--cfg experiments/e2e_faster_rcnn_resnet-50-FPN_pascal2007.yaml \
TEST.WEIGHTS ./experiments/output_bak/train/voc_2007_train/generalized_rcnn/model_final.pkl \
NUM_GPUS 1

Reference

https://blog.csdn.net/weixin_35653315/article/details/71028523

https://blog.csdn.net/u012905422/article/details/52372755

Pascal VOC & COCO数据集介绍 & 转换的更多相关文章

  1. 目标检测coco数据集点滴介绍

    目标检测coco数据集点滴介绍 1.  COCO数据集介绍 MS COCO 是google 开源的大型数据集, 分为目标检测.分割.关键点检测三大任务, 数据集主要由图片和json 标签文件组成. c ...

  2. 第三十二节,使用谷歌Object Detection API进行目标检测、训练新的模型(使用VOC 2012数据集)

    前面已经介绍了几种经典的目标检测算法,光学习理论不实践的效果并不大,这里我们使用谷歌的开源框架来实现目标检测.至于为什么不去自己实现呢?主要是因为自己实现比较麻烦,而且调参比较麻烦,我们直接利用别人的 ...

  3. 深度学习数据集MNIST ImageNet COCO PASCAL VOC介绍

    参考文档 深度学习数据集汇总介绍 1.  MNIST 深度学习领域的“Hello World!”,入门必备!MNIST是一个手写数字数据库,它有60000个训练样本集和10000个测试样本集,每个样本 ...

  4. PASCAL VOC数据集分析(转)

    PASCAL VOC数据集分析 PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge. 本文主要分析PASCAL V ...

  5. 自动化工具制作PASCAL VOC 数据集

    自动化工具制作PASCAL VOC 数据集   1. VOC的格式 VOC主要有三个重要的文件夹:Annotations.ImageSets和JPEGImages JPEGImages 文件夹 该文件 ...

  6. 【计算机视觉】PASCAL VOC数据集分析

    PASCAL VOC数据集分析 PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge. 本文主要分析PASCAL V ...

  7. 【Detection】物体识别-制作PASCAL VOC数据集

    PASCAL VOC数据集 PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge 默认为20类物体 1 数据集结构 ...

  8. PASCAL VOC数据集The PASCAL Object Recognition Database Collection

    The PASCAL Object Recognition Database Collection News 04-Apr-07: The VOC2007 challenge development ...

  9. Win10 + YOLOv3训练VOC数据集-----How to train Pascal VOC Data

    How to train (Pascal VOC Data): Download pre-trained weights for the convolutional layers (154 MB):  ...

随机推荐

  1. POJ - 2785 4 Values whose Sum is 0 二分

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 25615   Accep ...

  2. Mybatis框架简单使用

    Mybatis框架简单使用 环境搭建 新建一个JavaWeb项目,在web\WEB-INF\创建lib文件,并且在其下添加Mybatis的核心包以及依赖包,以及Mysql驱动包,junit4测试包等. ...

  3. [leetcode tree]104. Maximum Depth of Binary Tree

    求树的最大深度 class Solution(object): def maxDepth(self, root): if not root: return 0 left = self.maxDepth ...

  4. MySQL 语句分析

    公司使用的数据库是 MySQL 数据库,我对于 MySQL 的了解仅仅是上学的时候学过PHP略微了解. 我认为,作为一个后端程序员,除了在意功能能不能实现之外, 在实现功能之后,还要去想有没有更好的办 ...

  5. hash课堂测试补分博客

    题目要求: 开放地址法: 概念: 所谓的开放定址法就是一旦发生了冲突,就去寻找下一个空的散列地址,只要散列表足够大,空的散列地址总能找到,并将记录存入. 它的公式为: 解题过程(在下图中): 拉链法: ...

  6. MySQL的冷备份和热备份概念理解(转)

    一.冷备份(off, 慢, 时间点上恢复) 冷备份发生在数据库已经正常关闭的情况下,当正常关闭时会提供给我们一个完整的数据库.冷备份是将关键性文件拷贝到另外位置的一种说法.对于备份数据库信息而言,冷备 ...

  7. 【Deep Learning】一、AutoEncoder

    Deep Learning 第一战: 完成:UFLDL教程 稀疏自编码器-Exercise:Sparse Autoencoder Code: 学习到的稀疏参数W1: 参考资料: UFLDL教程 稀疏自 ...

  8. 1588: [HNOI2002]营业额统计 (splay tree)

    1588: [HNOI2002]营业额统计 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 5783  Solved: 1859[Submit][Stat ...

  9. How to check Ubuntu version

    Below you can find some tips on how to check Ubuntu version you are currently running. The first pla ...

  10. 不用软件快速拥有几百个QQ群并都是管理员

    不用软件快速拥有几百个QQ群并都是管理员!快速拥有有几十万精准数据库的方法 !和快速收集上亿邮箱的思维方法(附上5种赚钱方法).pdf_免费高速下载|百度云 网盘-分享无限制 http://pan.b ...