1975年,物理学家米切尔·费根鲍姆(Mitchell Feigenbaum)发现,一个可用实验加以测 量的特殊数与每个周期倍化级联相联系。这个数大约是4.669,它与π并列成为似乎在数学及其与自然界的关系中都有非同寻常意 义的离奇数之一。费根鲍姆数也有一个符号:希腊字母δ。数π告 诉我们圆周长如何与圆的直径相关。类似地,费根鲍姆数δ告诉我们水滴周期如何与水的流速相关。准确地说,你必须通过这个额外量旋开水龙头,在每次周期倍化时减小 1/4.669。
      π是与圆有关的任何东西的一个定量特征。同理,费根鲍姆数δ是任何周期倍化级联的定量特征,不管级联是如何产生的或如何用实验得出的。这同一个数在关于液氨、水、电路、摆、磁体以及振动车轮的实验中都会出现。它是自然界中一个新的普适模式,是我们仅仅透过混沌之眼就可看到的模式,一个从定性现象产生的 定量模式,一个数。这数确实是自然之数中的一个。费根鲍姆数打开了通往数学新世界的大门,我们才刚刚开始探索这个世界? 费根鲍姆发现的这个精确模式(和谐如此类的其他模式)是一件杰作。其根本点在于,甚至当自然之定律的结果看上去无模式时,定律依然存在,模式亦然。混沌不是无规,它是由精确规律产生的貌似无规的行为。混沌是隐秘形式的秩序。

相关软件:混沌数学之离散点集图形DEMO

相关代码:

// http://wenku.baidu.com/view/a70190fe04a1b0717fd5ddeb.html
class FeigenbaumEquation : public DiscreteEquation
{
public:
FeigenbaumEquation()
{
m_StartX = 0.0f;
m_StartY = 0.25f; m_ParamA = 0.5f;
} void IterateValue(float x, float y, float& outX, float& outY) const
{
outX = x+0.00025f;
outY = m_ParamA*sinf(PI*y);
} bool IsValidParamA() const {return true;}
};

相关截图:

混沌数学之Feigenbaum模型的更多相关文章

  1. 混沌数学之logistic模型

    logistic回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率. 相关DEMO参见:混沌数学之离散点集图形DEMO ...

  2. 混沌数学之ASin模型

    相关软件:混沌数学之离散点集图形DEMO 相关代码: class ASinEquation : public DiscreteEquation { public: ASinEquation() { m ...

  3. 混沌数学之Kent模型

    相关软件:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/7c6f4a000740be1e650e9a75.html // 肯特映射 clas ...

  4. 混沌数学之Standard模型

    相关软件混沌数学之离散点集图形DEMO 相关代码: class StandardEquation : public DiscreteEquation { public: StandardEquatio ...

  5. 混沌数学之Arnold模型

    相关软件混沌数学之离散点集图形DEMO 相关代码: class ArnoldEquation : public DiscreteEquation { public: ArnoldEquation() ...

  6. 混沌数学之Baker模型

    相关DEMO参见:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/ac9b57ea172ded630b1cb65b.html class Ba ...

  7. 混沌数学之Henon模型

    相关DEMO参见:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/d51372a60029bd64783e2cc0.html?re=view ...

  8. 混沌数学之离散点集图形DEMO

    最近看了很多与混沌相关的知识,并写了若干小软件.混沌现象是个有意思的东西,同时混沌也能够生成许多有意思的图形.混沌学的现代研究使人们渐渐明白,十分简单的数学方程完全可以模拟系统如瀑布一样剧烈的行为.输 ...

  9. 混沌数学之二维logistic模型

    上一节讲了logistic混沌模型,这一节对其扩充一下讲二维 Logistic映射.它起着从一维到高维的衔接作用,对二维映射中混沌现象的研究有助于认识和预测更复杂的高维动力系统的性态.通过构造一次藕合 ...

随机推荐

  1. 搭建 Android 集成开发环境

    在搭建 Android 集成开发环境之前,我想说的是,我们学习的目标是同时掌握移动开发三种方式:iOS开发.Android开发和Html5手机网页开发.由于iOS的开发工具是采用苹果官方的XCode, ...

  2. thinkphp在某种方法之前与之后执行的方法

    在thinkphp中有两个方法可以在某个方法之前或之后执行,分别是_before_xxx() 和_after_xxx()两个方法 1 2 3 4 5 6 public function _before ...

  3. CSUOJ 1270 Swap Digits

    Description ) in the first line, which has the same meaning as above. And the number is in the next ...

  4. Jenkins的Pipeline脚本在美团餐饮SaaS中的实践

    一.背景 在日常开发中,我们经常会有发布需求,而且还会遇到各种环境,比如:线上环境(Online),模拟环境(Staging),开发环境(Dev)等.最简单的就是手动构建.上传服务器,但这种方式太过于 ...

  5. POJ2104 K-th Number 不带修改的主席树 线段树

    http://poj.org/problem?id=2104 给定一个序列,求区间第k小 通过构建可持久化的点,得到线段树左儿子和右儿子的前缀和(前缀是这个序列从左到右意义上的),然后是一个二分的ge ...

  6. 【单调队列】BZOJ1342-[Baltic2007]Sound静音问题

    [题目大意] 给出一个n个数的序列,以哪位位置为开头的长度为m的区间满足该区间的最大值与最小值的差≤一个定值. [思路] 单调队列……说一下单调队列比较方便的操作. 把第一个先丢进去,开始条件为hea ...

  7. word-ladder总结

    title: word ladder总结 categories: LeetCode tags: 算法 LeetCode comments: true date: 2016-10-16 09:42:30 ...

  8. Codeforces Round #356 (Div. 2) B. Bear and Finding Criminal 水题

    B. Bear and Finding Criminals 题目连接: http://www.codeforces.com/contest/680/problem/B Description Ther ...

  9. Codeforces Beta Round #37 C. Old Berland Language 暴力 dfs

    C. Old Berland Language 题目连接: http://www.codeforces.com/contest/37/problem/C Description Berland sci ...

  10. LogStash日志分析系统

    简介 通常日志管理是逐渐崩溃的——当日志对于人们最重要的时候,也就是出现问题的时候,这个渐进的过程就开始了.日志管理一般会经历一下3个阶段: 初级管理员将通过一些传统工具(如cat.tail.sed. ...