1975年,物理学家米切尔·费根鲍姆(Mitchell Feigenbaum)发现,一个可用实验加以测 量的特殊数与每个周期倍化级联相联系。这个数大约是4.669,它与π并列成为似乎在数学及其与自然界的关系中都有非同寻常意 义的离奇数之一。费根鲍姆数也有一个符号:希腊字母δ。数π告 诉我们圆周长如何与圆的直径相关。类似地,费根鲍姆数δ告诉我们水滴周期如何与水的流速相关。准确地说,你必须通过这个额外量旋开水龙头,在每次周期倍化时减小 1/4.669。
      π是与圆有关的任何东西的一个定量特征。同理,费根鲍姆数δ是任何周期倍化级联的定量特征,不管级联是如何产生的或如何用实验得出的。这同一个数在关于液氨、水、电路、摆、磁体以及振动车轮的实验中都会出现。它是自然界中一个新的普适模式,是我们仅仅透过混沌之眼就可看到的模式,一个从定性现象产生的 定量模式,一个数。这数确实是自然之数中的一个。费根鲍姆数打开了通往数学新世界的大门,我们才刚刚开始探索这个世界? 费根鲍姆发现的这个精确模式(和谐如此类的其他模式)是一件杰作。其根本点在于,甚至当自然之定律的结果看上去无模式时,定律依然存在,模式亦然。混沌不是无规,它是由精确规律产生的貌似无规的行为。混沌是隐秘形式的秩序。

相关软件:混沌数学之离散点集图形DEMO

相关代码:

// http://wenku.baidu.com/view/a70190fe04a1b0717fd5ddeb.html
class FeigenbaumEquation : public DiscreteEquation
{
public:
FeigenbaumEquation()
{
m_StartX = 0.0f;
m_StartY = 0.25f; m_ParamA = 0.5f;
} void IterateValue(float x, float y, float& outX, float& outY) const
{
outX = x+0.00025f;
outY = m_ParamA*sinf(PI*y);
} bool IsValidParamA() const {return true;}
};

相关截图:

混沌数学之Feigenbaum模型的更多相关文章

  1. 混沌数学之logistic模型

    logistic回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率. 相关DEMO参见:混沌数学之离散点集图形DEMO ...

  2. 混沌数学之ASin模型

    相关软件:混沌数学之离散点集图形DEMO 相关代码: class ASinEquation : public DiscreteEquation { public: ASinEquation() { m ...

  3. 混沌数学之Kent模型

    相关软件:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/7c6f4a000740be1e650e9a75.html // 肯特映射 clas ...

  4. 混沌数学之Standard模型

    相关软件混沌数学之离散点集图形DEMO 相关代码: class StandardEquation : public DiscreteEquation { public: StandardEquatio ...

  5. 混沌数学之Arnold模型

    相关软件混沌数学之离散点集图形DEMO 相关代码: class ArnoldEquation : public DiscreteEquation { public: ArnoldEquation() ...

  6. 混沌数学之Baker模型

    相关DEMO参见:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/ac9b57ea172ded630b1cb65b.html class Ba ...

  7. 混沌数学之Henon模型

    相关DEMO参见:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/d51372a60029bd64783e2cc0.html?re=view ...

  8. 混沌数学之离散点集图形DEMO

    最近看了很多与混沌相关的知识,并写了若干小软件.混沌现象是个有意思的东西,同时混沌也能够生成许多有意思的图形.混沌学的现代研究使人们渐渐明白,十分简单的数学方程完全可以模拟系统如瀑布一样剧烈的行为.输 ...

  9. 混沌数学之二维logistic模型

    上一节讲了logistic混沌模型,这一节对其扩充一下讲二维 Logistic映射.它起着从一维到高维的衔接作用,对二维映射中混沌现象的研究有助于认识和预测更复杂的高维动力系统的性态.通过构造一次藕合 ...

随机推荐

  1. umount /dev/shm

    [root@test ~]# umount /dev/shm umount: /dev/shm: device is busy.        (In some cases useful info a ...

  2. 美团DB数据同步到数据仓库的架构与实践

    背景 在数据仓库建模中,未经任何加工处理的原始业务层数据,我们称之为ODS(Operational Data Store)数据.在互联网企业中,常见的ODS数据有业务日志数据(Log)和业务DB数据( ...

  3. 不要62 hdu 2089 dfs记忆化搜索

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=2089 题意: 给你两个数作为一个闭区间的端点,求出该区间中不包含数字4和62的数的个数 思路: 数位dp中 ...

  4. 删除或修改eclipse中svn的账号密码

    由于eclipse没有自带的管理svn账号的功能,我也没有找到相关的插件,要是有朋友知道的话也可以跟我说下哦!以下是关于自己手动去删除eclipse 软件的 svn账号,以便切换项目的时候去更换svn ...

  5. 安装部署VMware vSphere 5.5文档 (6-4) 安装配置DB数据库

    部署VMware vSphere 5.5 实施文档 ########################################################################## ...

  6. djongo form.is_valid 返回false的解决方法

    在用djongo编写网站时,有时点击提交按钮之后,并未提交,通过debug会发现是form.is_valid()返回false造成的.但是,具体原因往往并不容易找. 这时在提交的html中添加如下代码 ...

  7. linux下elasticsearch安装教程

    centos 7.5安装 elasticsearch 第一步,安装elasticsearch需要Java8 首先使用 yum list installed | grep java 查看安装的Java版 ...

  8. PyQt QString 与 Python str&unicode

    昨日,将许久以前做的模拟网页登录脚本用PyQt封装了一下,结果出大问题了, 登录无数次都提示登录失败!!而不用PyQt实现的GUI登录直接脚本登录无数次都提示登录成功!!心中甚是伤痛,于是探究起来,解 ...

  9. BZOJ 4419: [Shoi2013]发微博 set模拟

    4419: [Shoi2013]发微博 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4419 Description 刚开通的SH微博共 ...

  10. wikioi 1434 孪生素数 水题、素数模版

    1434 孪生素数 时间限制: 1 s 空间限制: 1000 KB 题目等级 : 白银 Silver 题目描述 Description 输出100以内的所有相差6的孪生素数:如, 5 11 7 13 ...