时间复杂度\(O(N^2)\),原理不明......

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>1
#include <map>
#include <set>
#include <cassert>
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
// head int _,n;
namespace linear_seq {
const int N=10010;
ll res[N],base[N],_c[N],_md[N]; vector<int> Md;
void mul(ll *a,ll *b,int k) {
rep(i,0,k+k) _c[i]=0;
rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (int i=k+k-1;i>=k;i--) if (_c[i])
rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,0,k) a[i]=_c[i];
}
int solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
// printf("%d\n",SZ(b));
ll ans=0,pnt=0;
int k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
Md.clear();
rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
rep(i,0,k) res[i]=base[i]=0;
res[0]=1;
while ((1ll<<pnt)<=n) pnt++;
for (int p=pnt;p>=0;p--) {
mul(res,res,k);
if ((n>>p)&1) {
for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
if (ans<0) ans+=mod;
return ans;
}
VI BM(VI s) {
VI C(1,1),B(1,1);
int L=0,m=1,b=1;
rep(n,0,SZ(s)) {
ll d=0;
rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==0) ++m;
else if (2*L<=n) {
VI T=C;
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)<SZ(B)+m) C.pb(0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+1-L; B=T; b=d; m=1;
} else {
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)<SZ(B)+m) C.pb(0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
int gao(VI a,ll n) {
VI c=BM(a);
c.erase(c.begin());
rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
}; int main() {
while (~scanf("%d",&n)) {
vector<int>v;
v.push_back(2);
v.push_back(3);
v.push_back(5);
v.push_back(7);
v.push_back(11);
v.push_back(13);
v.push_back(17);
v.push_back(19);
//VI{1,2,4,7,13,24}
printf("%d\n",linear_seq::gao(v,n-1));
}
}

BM求递推式模板的更多相关文章

  1. P1067Warcraft III 守望者的烦恼(十大矩阵问题之七求递推式)

    https://vijos.org/p/1067 守望者-warden,长期在暗夜精灵的的首都艾萨琳内担任视察监狱的任务,监狱是成长条行的,守望者warden拥有一个技能名叫“闪烁”,这个技能可以把她 ...

  2. Ex 2_3 求递推式的通项公式..._第三次作业

  3. 【HDU4990】递推式

    题目大意:给定序列 1, 2, 5, 10, 21, 42, 85, 170, 341 …… 求第n项 模 m的结果 递推式 f[i]  = f[i - 2] + 2 ^ (i - 1); 方法一:  ...

  4. 【模板】BM + CH(线性递推式的求解,常系数齐次线性递推)

    这里所有的内容都将有关于一个线性递推: $f_{n} = \sum\limits_{i = 1}^{k} a_{i} * f_{n - i}$,其中$f_{0}, f_{1}, ... , f_{k ...

  5. Berlekamp Massey算法求线性递推式

    BM算法求求线性递推式   P5487 线性递推+BM算法   待AC.   Poor God Water   // 题目来源:ACM-ICPC 2018 焦作赛区网络预赛 题意   God Wate ...

  6. 线性齐次递推式快速求第n项 学习笔记

    定义 若数列 \(\{a_i\}\) 满足 \(a_n=\sum_{i=1}^kf_i \times a_{n-i}\) ,则该数列为 k 阶齐次线性递推数列 可以利用多项式的知识做到 \(O(k\l ...

  7. HDU - 6172:Array Challenge (BM线性递推)

    题意:给出,三个函数,h,b,a,然后T次询问,每次给出n,求sqrt(an); 思路:不会推,但是感觉a应该是线性的,这个时候我们就可以用BM线性递推,自己求出前几项,然后放到模板里,就可以求了. ...

  8. 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式

    矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d     ...

  9. hdu 1757 A Simple Math Problem (构造矩阵解决递推式问题)

    题意:有一个递推式f(x) 当 x < 10    f(x) = x.当 x >= 10  f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + ...

随机推荐

  1. catch异常

    int ret = -1; try { ret = tBuyerCodeApplyInfoService.insertTBuyerCodeApplyInfoBySelective(buyerCode) ...

  2. Java - 延迟初始化

    延迟初始化(lazy initialization),也就是在真正被使用的时候才开始初始化的技巧. 不论是静态还是实例,都可以进行延迟初始化. 其本质是初始化开销和访问开销之间的权衡. 毕竟是一种优化 ...

  3. 微信小程序开发总结(详细)

    转载: 小程序开发总结(详细) 这段时间一直在做小程序,总结下.后续可能会不断更新,努力写仔细点,争取让人看到就能会写. 一,页面结构. 这基本是小程序的标准目录结构.我们从上到下解释下:pages文 ...

  4. [javaSE] 单例设计模式

    四人帮设计了23中设计模式 单例设计模式:解决一个类在内存中只存在一个对象 构造函数私有化 在类中创建一个本类对象 提供一个方法可以获取该对象 class Single{ private static ...

  5. MyEclipse中新建JSP页面编码设置(UTF-8)

    今天再次遭遇反人类的Eclipse,新建JSP页面编码竟然是不是UTF8,导致各种乱码.做下面的修改就能避免这个问题了.

  6. ios app真正的相互!!调用

    1.需求:A应用打开B.B回跳到A   2.问题: 看到网络上的文档讲的大多数都是app单向跳转的例子,而我们在跳转到第二个app的时候往往需要返回到原来的app,虽然支付宝微信等第三方等应用会有回调 ...

  7. graphviz 的节点形状

    graphviz 的节点可以定义不同的外形,比如下面的定义, digraph tt1{     a[shape=box];     c[shape=lpromoter];     d[shape=do ...

  8. Java的工厂模式(三)

    除了一般的工厂模式之外,还有抽象工厂模式,抽象工厂模式更强调产品族的概念,一个具体工厂生产出来的系列商品都是一个产品族的. 假设我们有两个具体工厂,分别是袋装水果工厂和罐装水果工厂,它们都能生产苹果和 ...

  9. Hibernate的一对多实例

    一对多在现实生活中很常见,今天做了个Hibernate的一对多的实例,也是个入门过程,写下来跟大家分享. 最重要的是xml配置文件,之前因为把英文"(引号)错误的复制成中文的“”(引号),导 ...

  10. 无效的列类型:getTimestamp not implemented for class oracle.jdbc.driver.T4CNumberAccessor

    错误信息: 无效的列类型:getTimestamp not implemented for class oracle.jdbc.driver.T4CNumberAccessor 错误原因:经过排查发现 ...