简介

语义分割:给图像的每个像素点标注类别。通常认为这个类别与邻近像素类别有关,同时也和这个像素点归属的整体类别有关。利用图像分类的网络结构,可以利用不同层次的特征向量来满足判定需求。现有算法的主要区别是如何提高这些向量的分辨率,以及如何组合这些向量。

几种结构

  • 全卷积网络FCN:上采样提高分割精度,不同特征向量相加。[3]
  • UNET:拼接特征向量;编码-解码结构;采用弹性形变的方式,进行数据增广;用边界加权的损失函数分离接触的细胞。[4]
  • SegNet:记录池化的位置,反池化时恢复。[3]
  • PSPNet:多尺度池化特征向量,上采样后拼接[3]
  • Deeplab:池化跨度为1,然后接带孔卷积。
  • ICNet:多分辨图像输入,综合不同网络生成结果。

实验设计

测试平台

  • 采用[1]的代码,去掉one_hot,把损失函数改成交叉熵。
  • 在验证过程引入pixel accuray和mIOU,代码见[2]
  • 用颜色代码替换标签的类别代码,这样visdom可以显示多类别标签

数据集

  • [1]自带数据集Bag,二分类,图像800800,代码中转换到160160。

    • 这个数据集很容易收敛,可以忽略优化器的影响,用来估计网络结构的性能上限。
  • CamVid,代码见[2],从视频中截取的,图像很相似。图像尺寸960*720。
  • PASCAL VOC 2007/2012,代码参照[3],图像差别大。

测试计划

  • 在github上收集能成功运行的模型
  • 在同等条件下比较技术细节:vgg16为基础结构
    • 比较单层特征向量进行转置卷积、上采样或者反池化后的效果
    • 比较特征向量的拼接和线性组合
    • 比较多尺度输入的网络组合

实验结果

超参数:epochs=50,lr=0.001,optim=SGD,momentum=0.7u

数据集:Bag,resize(160,160),batch_size=4

注意vgg16正确的层号,每层最后一个是池化。

feats = list(models.vgg16(pretrained=True).features.children())
self.feat1 = nn.Sequential(*feats[0:5])
self.feat2 = nn.Sequential(*feats[5:10])
self.feat3 = nn.Sequential(*feats[10:17])
self.feat4 = nn.Sequential(*feats[17:24])
self.feat5 = nn.Sequential(*feats[24:31])

单层特征向量

1*1卷积+标签收缩(到对应层尺寸)

网络层 单epoch时间(s) mIOU(%) pixel-acc(%) GPU(G)
5 8 82 90 1.1
4 8 86 93 1.0
3 6 80 90 1.0

1*1卷积+上采样(2倍)+标签收缩

网络层 单epoch时间(s) mIOU(%) pixel-acc(%) GPU(G)
5->4 8 72 85 1.1
4->3 6 80 90 1.0
3->2 5 78 88 1.0

1*1卷积+转置卷积(2倍)+标签收缩

网络层 单epoch时间(s) mIOU(%) pixel-acc(%) GPU(G)
5->4 8 79 89 1.1
4->3 6 84 92 1.0
3->2 5 80 90 1.0

反池化(2倍)+1*1卷积+标签收缩

网络层 单epoch时间(s) mIOU(%) pixel-acc(%) GPU(G)
5->4 8 84 92 1.1
4->3 7 87 94 1.1
3->2 5 84 91 1.0

池化(stride=1)+2*2卷积(stride=1,padding=1)+标签收缩

网络层 单epoch时间(s) mIOU(%) pixel-acc(%) GPU(G)
5->4 8 84 92 1.1
4->3 7 89 95 1.0
3->2 7 80 90 1.1

多层特征向量组合

  • 理论上,求和是拼接+1*1卷积的一个特例。

上采样(逐层,直到原始尺寸)+1*1卷积+求和(FCN)

网络层 单epoch时间(s) mIOU(%) pixel-acc(%) GPU(G)
5 8 82 91 1.2
5+4 8 88 94 1.2
5+4+3 9 88 94 1.2

上采样(逐层,直到原始尺寸)+1*1卷积+拼接(UNET')

网络层 单epoch时间(s) mIOU(%) pixel-acc(%) GPU(G)
5 8 82 91 1.2
5+4 9 87 93 1.2
5+4+3 9 89 94 1.1

上采样(直接达到原始尺寸)+1*1卷积+拼接(PSPNET')

网络层 单epoch时间(s) mIOU(%) pixel-acc(%) GPU(G)
5 8 84 92 1.2
5+4 9 87 93 1.2
5+4+3 8 88 94 1.2

反池化(逐层)+1*1卷积+上采样(SegNet')

网络层 单epoch时间(s) mIOU(%) pixel-acc(%) GPU(G)
5 8 82 91 1.1
5->4 8 88 94 1.1
5->4->3 9 89 95 1.1

附加实验

epochs=100,lr=3e-3

网络 单epoch时间(s) mIOU(%) pixel-acc(%) GPU(G)
PSPNET(反池化) 8 91 96 1.1
PSPNET(池化,stride=1) 9 91 96 1.2

引用

  1. https://github.com/bat67/pytorch-FCN-easiest-demo
  2. https://github.com/pochih/FCN-pytorch
  3. https://github.com/bodokaiser/piwise
  4. https://github.com/jaxony/unet-pytorch/

参考文献

  • Long J , Shelhamer E , Darrell T . Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 39(4):640-651.
  • Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]// International Conference on Medical Image Computing & Computer-assisted Intervention. 2015.
  • Zhao H , Shi J , Qi X , et al. Pyramid Scene Parsing Network[J]. 2016.
  • Chen L C , Papandreou G , Schroff F , et al. Rethinking Atrous Convolution for Semantic Image Segmentation[J]. 2017.
  • Zhao H, Qi X, Shen X, et al. ICNet for Real-Time Semantic Segmentation on High-Resolution Images[J]. 2017.

比较语义分割的几种结构:FCN,UNET,SegNet,PSPNet和Deeplab的更多相关文章

  1. 【Keras】基于SegNet和U-Net的遥感图像语义分割

    上两个月参加了个比赛,做的是对遥感高清图像做语义分割,美其名曰"天空之眼".这两周数据挖掘课期末project我们组选的课题也是遥感图像的语义分割,所以刚好又把前段时间做的成果重新 ...

  2. 使用Keras基于RCNN类模型的卫星/遥感地图图像语义分割

    遥感数据集 1. UC Merced Land-Use Data Set 图像像素大小为256*256,总包含21类场景图像,每一类有100张,共2100张. http://weegee.vision ...

  3. 笔记︱图像语义分割(FCN、CRF、MRF)、论文延伸(Pixel Objectness、)

    图像语义分割的意思就是机器自动分割并识别出图像中的内容,我的理解是抠图- 之前在Faster R-CNN中借用了RPN(region proposal network)选择候选框,但是仅仅是候选框,那 ...

  4. 语义分割(semantic segmentation) 常用神经网络介绍对比-FCN SegNet U-net DeconvNet,语义分割,简单来说就是给定一张图片,对图片中的每一个像素点进行分类;目标检测只有两类,目标和非目标,就是在一张图片中找到并用box标注出所有的目标.

    from:https://blog.csdn.net/u012931582/article/details/70314859 2017年04月21日 14:54:10 阅读数:4369 前言 在这里, ...

  5. 基于FCN的图像语义分割

    语义图像分割的目标在于标记图片中每一个像素,并将每一个像素与其表示的类别对应起来.因为会预测图像中的每一个像素,所以一般将这样的任务称为密集预测.(相对地,实例分割模型是另一种不同的模型,该模型可以区 ...

  6. 语义分割--全卷积网络FCN详解

    语义分割--全卷积网络FCN详解   1.FCN概述 CNN做图像分类甚至做目标检测的效果已经被证明并广泛应用,图像语义分割本质上也可以认为是稠密的目标识别(需要预测每个像素点的类别). 传统的基于C ...

  7. FCN与U-Net语义分割算法

    FCN与U-Net语义分割算法 图像语义分割(Semantic Segmentation)是图像处理和是机器视觉技术中关于图像理解的重要一环,也是 AI 领域中一个重要的分支.语义分割即是对图像中每一 ...

  8. 全卷积网络(FCN)实战:使用FCN实现语义分割

    摘要:FCN对图像进行像素级的分类,从而解决了语义级别的图像分割问题. 本文分享自华为云社区<全卷积网络(FCN)实战:使用FCN实现语义分割>,作者: AI浩. FCN对图像进行像素级的 ...

  9. 人工智能必须要知道的语义分割模型:DeepLabv3+

    图像分割是计算机视觉中除了分类和检测外的另一项基本任务,它意味着要将图片根据内容分割成不同的块.相比图像分类和检测,分割是一项更精细的工作,因为需要对每个像素点分类,如下图的街景分割,由于对每个像素点 ...

随机推荐

  1. Java实现Package编译和访问

    Java实现Package编译和访问 说明 所有文件都是使用UTF-8编码来写的,请不要用Windows记事本随便打开 Test.java文件中注释的方法说明了该类是不能访问其方法的 文件目录树 bi ...

  2. linq to sql 分页技术

    昨天在用LINQ写分页的时候碰到一个很奇怪的问题:翻页的时候,有的数据会莫名其妙地消失,查了半个多小时才发现问题所在,其实是一个很细节的地方. 数据表如下: LINQ分页的实现是: var artic ...

  3. 利用MATLAB软件对数码相机进行检校

    分享资料:https://pan.baidu.com/s/1FQb-ttLJNJKlMzu-0RjBsw.内部包含张正友的经典论文等文献,官网的checkerboardPattern等.

  4. ZooKeeper(一)基本介绍

    本文转载自LDB's Blog,原文链接 ZooKeeper原理及其在Hadoop和HBase中的应用 目录 一.简介 二.基本概念 1. 集群角色 2. 会话(Session) 3. 数据节点(ZN ...

  5. Nginx与浏览器缓存

    Nginx与浏览器缓存 一.浏览器对缓存的处理:Internet选项 ★ 控制请求服务器策略:是忽略资源的缓存策略的情况下额外强制请求服务器的意思.  ★ 检查存储的页面较新版本 1.每次访问网页时  ...

  6. Oracle 创建函数

    Oracle创建函数的方法如下: CREATE OR REPLACE FUNCTION FunctionName ( --传入参数 para NCHAR ) RETURN NUMBER IS --函数 ...

  7. 各国货币json文件

    [ {"countryname":"","name":"请选择","currency":" ...

  8. vb6 读写文件

    '--------------------------------- 'write file     Dim nHandle As Integer, fName As String     fName ...

  9. # 2017-2018-1 20155224 《信息安全系系统设计基础》第四周MyOD

    2017-2018-1 20155224 <信息安全系系统设计基础>第四周MyOD 在这里跟老师先道歉,当时我的git没有安装好,后面也一直没有装上,所以程序没有git. 要求 参考教材第 ...

  10. 20155327 java第四周学习笔记

    20155327 java第四周学习笔记 五六章知识整理 1子类与父类 父类是接口或者是抽象类,子类必须继承自父类. 2子类的继承性 在Java中,通过关键字extends继承一个已有的类,被继承的类 ...