http://poj.org/problem?id=2117 

这个妹妹我竟然到现在才见过,我真是太菜了~~~

求去掉一个点后图中最多有多少个连通块。(原图可以本身就有多个连通块)

首先设点i去掉后它的子树(我知道不准确但是领会精神就好了吧orz)能分成cut[i]个连通块,那么除了节点之外去掉任意一个点就多出cut[i]个联通块(根节点多出cut[i]-1个连通块)。

(简洁的语言说cut[i]表示的就是i点是多少个点双连通分量的割顶,我连割顶都忘了是什么了嘤嘤嘤)

每个点只遍历一次且一定在所在连通块(子树)被割点切割时被遍历,遍历过之后判断这个子节点是否从割点被切割( low[y]>=x )就得到cut了。

注意cut[i]可以为负,当一个点单独作为连通块时它的cut[i]就是-1。

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
#define LL long long
#define pa pair<int,int>
const int maxn=;
const LL minf=(LL)5e17;
int n,m;
struct nod{
int x,y,next;
}e[maxn*];
int head[maxn]={},tot=;
int dfn[maxn]={},low[maxn]={},cut[maxn]={},cnt=;
inline void init(int x,int y){
e[++tot].y=y;e[tot].next=head[x];head[x]=tot;
}
void dfs(int x,int p){
dfn[x]=low[x]=++cnt;
for(int i=head[x];i;i=e[i].next){
if(!dfn[e[i].y]){
dfs(e[i].y,x);
low[x]=min(low[x],low[e[i].y]);
if(low[e[i].y]>=dfn[x])++cut[x];
}
else low[x]=min(dfn[e[i].y],low[x]);
}
}
int main(){
while(~scanf("%d%d",&n,&m)){
if(n==&&m==)break;
int x,y;tot=;
memset(head,,sizeof(head));
memset(dfn,,sizeof(dfn));
memset(cut,,sizeof(cut));
for(int i=;i<=m;i++){
scanf("%d%d",&x,&y);++x;++y;
init(x,y);init(y,x);
}
int ans=,ff=-;
for(int i=;i<=n;i++)if(!dfn[i]){dfs(i,);cut[i]--;ans++;}
for(int i=;i<=n;i++)ff=max(ff,cut[i]);
printf("%d\n",ans+ff);
}
return ;
}

POJ 2117 Electricity 双联通分量 割点的更多相关文章

  1. poj 2117 Electricity(tarjan求割点删掉之后的连通块数)

    题目链接:http://poj.org/problem?id=2117 题意:求删除一个点后,图中最多有多少个连通块. 题解:就是找一下割点,根节点的割点删掉后增加son-1(son为子树个数),非根 ...

  2. 【9.22校内测试】【可持久化并查集(主席树实现)】【DP】【点双联通分量/割点】

    1 build1.1 Description从前有一个王国,里面有n 座城市,一开始两两不连通.现在国王将进行m 次命令,命令可能有两种,一种是在u 和v 之间修建道路,另一种是询问在第u 次命令执行 ...

  3. Tarjan 强连通分量 及 双联通分量(求割点,割边)

    Tarjan 强连通分量 及 双联通分量(求割点,割边) 众所周知,Tarjan的三大算法分别为 (1)         有向图的强联通分量 (2)         无向图的双联通分量(求割点,桥) ...

  4. POJ 3177 Redundant Paths 双联通分量 割边

    http://poj.org/problem?id=3177 这个妹妹我大概也曾见过的~~~我似乎还没写过双联通分量的blog,真是智障. 最少需要添多少条边才能使这个图没有割边. 边双缩点后图变成一 ...

  5. POJ 2942 Knights of the Round Table 补图+tarjan求点双联通分量+二分图染色+debug

    题面还好,就不描述了 重点说题解: 由于仇恨关系不好处理,所以可以搞补图存不仇恨关系, 如果一个桌子上面的人能坐到一起,显然他们满足能构成一个环 所以跑点双联通分量 求点双联通分量我用的是向栈中pus ...

  6. 【POJ 2942】Knights of the Round Table(双联通分量+染色判奇环)

    [POJ 2942]Knights of the Round Table(双联通分量+染色判奇环) Time Limit: 7000MS   Memory Limit: 65536K Total Su ...

  7. POJ 3694Network(Tarjan边双联通分量 + 缩点 + LCA并查集维护)

    [题意]: 有N个结点M条边的图,有Q次操作,每次操作在点x, y之间加一条边,加完E(x, y)后还有几个桥(割边),每次操作会累积,影响下一次操作. [思路]: 先用Tarjan求出一开始总的桥的 ...

  8. 『Tarjan算法 无向图的双联通分量』

    无向图的双连通分量 定义:若一张无向连通图不存在割点,则称它为"点双连通图".若一张无向连通图不存在割边,则称它为"边双连通图". 无向图图的极大点双连通子图被 ...

  9. 大白书中无向图的点双联通分量(BCC)模板的分析与理解

    对于一个无向图,如果任意两点至少存在两条点不重复(除起点和终点外无公共点)的路径,则这个图就是点双联通. 这个要求等价于任意两条边都存在于一个简单环(即同一个点不能在圈中出现两次)中,即内部无割点. ...

随机推荐

  1. 谈谈Linux内核驱动的coding style【转】

    转自:http://www.cnblogs.com/wwang/archive/2011/02/24/1960283.html 最近在向Linux内核提交一些驱动程序,在提交的过程中,发现自己的代码离 ...

  2. 聊天室(下篇)GatewayWorker 与 Laravel 的整合

    思路 上一篇大概梳理了一下 GatewayWorker 的基础知识.这篇就来准备整合 GatewayWorker 到 Laravel. GatewayWorker 是基于 Socket 监听的服务器框 ...

  3. C# 读取指定文件夹下所有文件

    #region 读取文件 //返回指定目录中的文件的名称(绝对路径) string[] files = System.IO.Directory.GetFiles(@"D:\Test" ...

  4. asp.net 获取音视频时长 的方法

    http://www.evernote.com/l/AHPMEDnEd65A7ot_DbEP4C47QsPDYLhYdYg/ 日志:   1.第一种方法:   调用:shell32.dll ,win7 ...

  5. image配准,发布geoserver服务

    1.arcmap配准:注:png只保留需要显示范围,多余部分删除,,配准后再进行栅格裁剪(为了去除偏移后出现的NoData值) 2.导出tif:注:NoData值设置,一般为256(有时候经过裁剪会默 ...

  6. centos7的防火墙(firewalld)

    Centos7中默认将原来的防火墙iptables升级为了firewalld,firewalld跟iptables比起来至少有两大好处: 1.firewalld可以动态修改单条规则,而不需要像ipta ...

  7. js数组基本操作

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN""http://www.w3.org/TR/xhtm ...

  8. 多路复用IO与NIO

    最近在学习NIO相关知识,发现需要掌握的知识点非常多,当做笔记记录就下. 在学NIO之前得先去了解IO模型 (1)同步阻塞IO(Blocking IO):即传统的IO模型. (2)同步非阻塞IO(No ...

  9. 一步一步学习IdentityServer3 (10)

    在某些服务器环境下 identityserver3 会闹情绪, 比如在google浏览器下授权失败(陷入死循环) 查了很多资料好像然并卵 Microsoft.Owin.Security.Notific ...

  10. Pg168—2题 修改

    package org.hanqi.pn0120; public class JuXing { JuXing(double chang,double kuan) { this.chang=chang; ...