传送门

一道斜率优化dp入门题。

是这样的没错。。。

我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二个地址为j,则有

total=[∑i=1ndis[i]∗w[i]]−dis[i]∗w[i]−dis[j]∗(sum[j]−sum[i])" role="presentation" style="position: relative;">total=[∑ni=1dis[i]∗w[i]]−dis[i]∗w[i]−dis[j]∗(sum[j]−sum[i])total=[∑i=1ndis[i]∗w[i]]−dis[i]∗w[i]−dis[j]∗(sum[j]−sum[i])。

然后假设对于两个不同的i取值比较优劣的话就相当于比较斜率,于是可以用斜率优化dp。

代码:

#include<bits/stdc++.h>
#define N 30005
using namespace std;
inline int read(){
    int ans=0;
    char ch=getchar();
    while(!isdigit(ch))ch=getchar();
    while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
    return ans;
}
int n,ans=2e9,tot,sum[N],dis[N],w[N],q[N],hd,tl;
inline double slope(int a,int b){return 1.0*(dis[a]*sum[a]-dis[b]*sum[b])/(sum[a]-sum[b]);}
inline int calc(int a,int b){return tot-dis[a]*sum[a]-dis[b]*(sum[b]-sum[a]);}
int main(){
    n=read();
    for(int i=1;i<=n;++i)w[i]=read(),dis[i]=read();
    for(int i=n-1;i;--i)dis[i]+=dis[i+1];
    for(int i=1;i<=n;++i)sum[i]=sum[i-1]+w[i],tot+=w[i]*dis[i];
    for(int i=1;i<=n;++i){
        while(hd<tl&&slope(q[hd],q[hd+1])>dis[i])++hd;
        ans=min(ans,calc(q[hd],i));
        while(hd<tl&&slope(q[tl-1],q[tl])<slope(q[tl],i))--tl;
        q[++tl]=i;
    }
    cout<<ans;
    return 0;
}

2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)的更多相关文章

  1. 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化)

    传送门 我可能根本就没有学过斜率优化…… 我们设$dis[i]$表示第$i$棵树到山脚的距离,$sum[i]$表示$w$的前缀和,$tot$表示所有树运到山脚所需要的花费,$dp[i]$表示将第二个锯 ...

  2. [CEOI2004]锯木厂选址 斜率优化DP

    斜率优化DP 先考虑朴素DP方程, f[i][k]代表第k个厂建在i棵树那里的最小代价,最后答案为f[n+1][3]; f[i][k]=min(f[j][k-1] + 把j+1~i的树都运到i的代价) ...

  3. 洛谷P4360 [CEOI2004]锯木厂选址(dp 斜率优化)

    题意 题目链接 Sol 枚举第二个球放的位置,用前缀和推一波之后发现可以斜率优化 // luogu-judger-enable-o2 #include<bits/stdc++.h> #de ...

  4. 洛谷4360[CEOI2004]锯木厂选址 (斜率优化+dp)

    qwq 我感觉这都已经不算是斜率优化\(dp\)了,感觉更像是qwq一个\(下凸壳优化\)转移递推式子. qwq 首先我们先定义几个数组 \(sw[i]\)表示\(w[i]\)的前缀和 \(val[i ...

  5. P4360 [CEOI2004]锯木厂选址

    P4360 [CEOI2004]锯木厂选址 这™连dp都不是 \(f_i\)表示第二个锯木厂设在\(i\)的最小代价 枚举1号锯木厂 \(f_i=min_{0<=j<i}(\sum_{i= ...

  6. luogu P4360 [CEOI2004]锯木厂选址

    斜率优化dp板子题[迫真] 这里从下往上标记\(1-n\)号点 记\(a_i\)表示前缀\(i\)里面树木的总重量,\(l_i\)表示\(i\)到最下面的距离,\(s_i\)表示\(1\)到\(i-1 ...

  7. luoguP4360 [CEOI2004]锯木厂选址

    题目链接 luoguP4360 [CEOI2004]锯木厂选址 题解 dis:后缀和 sum:前缀和 补集转化,减去少走的,得到转移方程 dp[i] = min(tot - sumj * disj - ...

  8. 动态规划(斜率优化):[CEOI2004]锯木厂选址

    锯木场选址(CEOI2004) 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运.山脚下有 ...

  9. [BZOJ2684][CEOI2004]锯木厂选址

    BZOJ权限题! Description 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运 ...

随机推荐

  1. 怎样在本地windows安装和配置zookeeper

    Zookeeper是什么?有什么用? Zookeeper是一个分布式协调服务. 作用:为用户的分布式应用程序提供协调服务.  zookeeper在底层其实只提供了两个功能: 1.管理(存储,读取)用户 ...

  2. 可视化库-seaborn-调色板(第五天)

    1. 基础的调色板的演示  color_palette() 设置传入的任何颜色,不传使用默认颜色,set_palette() 设置所有图的颜色# 6种主题 # 1 deep# 2 muted# 3 p ...

  3. UI5-文档-4.32-Routing with Parameters

    现在我们可以在overview和detail页面之间导航,但是我们在overview中选择的实际项目还没有显示在detail页面上.我们的应用程序的一个典型用例是在详细信息页面上显示所选项目的附加信息 ...

  4. clientdataset 用法

    http://www.360doc.com/content/10/0709/01/2071424_37769962.shtml

  5. Struts2拦截器的配置

    struts2拦截器interceptor的三种配置方法方法1. 普通配置法 <struts> <package name="struts2" extends=& ...

  6. Recursion递归

    /*java.lang 核心包 如 String Math Integer System Thread等 拿来直接用 * java.awt 窗口工具 GUI * java.net 网络包 * java ...

  7. spring 整合 struts2 xml配置

    整合之前要搞清楚struts2是什么; struts2:表现层框架  增删改查  作用域  页面跳转   异常处理  ajax 上传下载  excel   调用service spring :IOC/ ...

  8. 让IE浏览器支持CSS3表现

    http://www.zhangxinxu.com/wordpress/2010/04/%e8%ae%a9ie6ie7ie8%e6%b5%8f%e8%a7%88%e5%99%a8%e6%94%af%e ...

  9. Dubbo简单理解

    Dubbo 致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案.简单的说,Dubbo就是个服务框架,如果没有分布式的需求,其实是不需要用的,只有在分布式的时候,才有Dubbo这样 ...

  10. php 下 html5 XHR2 + FormData + File API 上传文件

    FormData的作用: FormData对象可以帮助我们自动的打包表单数据,通过XMLHttpRequest的send()方法来提交表单.当然FormData也可以动态的append数据.FormD ...