洛谷P2149 Elaxia的路线
传送门啦
分析:
我最开始想的是跑两遍最短路,然后记录一下最短路走了哪些边(如果有两条最短路就选经过边多的),打上标记。两边之后找两次都标记的边有多少就行了。
但。。。我并没有实现出来。
最后让我们看一下正解:
四边spfa+拓扑排序求最长边
先让我们考虑如何求两对点最短路的最长公共路径?
1.先明白:如果有一条边,它的起点到最短路的起点 + 终点到最短路的终点 + 边权 == 最短路起点到终点的距离,那么这条边一定在最短路上。
也就是说如果有一条边i:from -> to权值是w在最短路x -> y上,那么有disx->from + disto->y + edge[i].w == disx->y
2.所以就可以把两条最短路径都经过的边重新建图
3.最后就是求最长路即可(显然图是DAG 拓扑排序可以求)。
注意!!注意!!注意!!
1.最开始我们建的是无向图,也就是说:dis_{from->to} + wdisfrom−>to+w 和 dis_{to->from} + wdisto−>from+w是一样的。
2.重新建图的时候我们建的是有向图。
最短路和普通的spfaspfa没什么区别,稍微改了一下dis数组,那样就不用开4个dis了。
拓扑序也差不多,ind[i]ind[i]表示第ii点的入度。
总体来说,这个题主要还是想法,还有对基础算法的应用。挺好一个题。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn = ; inline int read(){
char ch = getchar(); int f = , x = ;
while(ch > '' || ch < ''){if(ch == '-') f = -; ch = getchar();}
while(ch >= '' && ch <= ''){x = (x << ) + (x << ) + ch - ''; ch = getchar();}
return x * f;
} int n,m,x,y,xx,yy,u,v,w;
struct Edge{
int from,to,next,val;
int tag;
}edge[maxn * maxn] , e[maxn * maxn];
int head1[maxn],tot1,head2[maxn],tot2;
int dis[][maxn],ind[maxn];
bool vis[maxn];
int f[maxn]; void add(int u,int v,int w){
edge[++tot1].to = v;
edge[tot1].from = u;
edge[tot1].next = head1[u];
edge[tot1].val = w;
head1[u] = tot1;
} void addedge(int u,int v,int w){
e[++tot2].from = u;
e[tot2].to = v;
e[tot2].val = w;
e[tot2].next = head2[u];
head2[u] = tot2;
} void spfa(int s,int flag){
queue<int> q;
for(int i=;i<=n;i++) dis[flag][i] = 1e9;
memset(vis,false,sizeof(vis));
q.push(s);
dis[flag][s] = ; vis[s] = true;
while(!q.empty()){
int cur = q.front();
q.pop(); vis[cur] = false;
for(int i=head1[cur];i;i=edge[i].next){
int v = edge[i].to;
if(dis[flag][v] > dis[flag][cur] + edge[i].val){
dis[flag][v] = dis[flag][cur] + edge[i].val;
if(vis[v] == ){
q.push(v);
vis[v] = true;
}
}
}
}
} inline void topo(){
queue<int> que;
que.push(x);
while(!que.empty()){
int cur = que.front();
que.pop();
for(int i=head2[cur];i;i=e[i].next){
int v = e[i].to , w = e[i].val;
--ind[v];
if(!ind[v]) {
que.push(v);
f[v] = max(f[v] , f[cur] + e[i].tag * w);
}
}
}
} void rebuild(){
for(int i=;i<=tot1;i++){
int v = edge[i].to , u = edge[i].from , w = edge[i].val;
if(dis[][u] + w + dis[][v] == dis[][y]){
addedge(u , v , w);
if(dis[][u] + w + dis[][v] == dis[][yy] || dis[][v] + w + dis[][u] == dis[][yy])
//为了处理无向图的问题
e[tot2].tag = ;
ind[v]++;
}
}
} int main(){
n = read(); m = read();
x = read(); y = read(); xx = read(); yy = read();
for(int i=;i<=m;i++){
u = read(); v = read(); w = read();
add(u , v , w);
add(v , u , w);
}
spfa(x , );
spfa(y , );
spfa(xx , );
spfa(yy , );
rebuild();
topo();
printf("%d\n",f[y]);
return ;
}
洛谷P2149 Elaxia的路线的更多相关文章
- 洛谷2149 Elaxia的路线(dp+最短路)
QwQ好久没更新博客了,颓废了好久啊,来补一点东西 题目大意 给定两个点对,求两对点间最短路的最长公共路径. 其中\(n,m\le 10^5\) 比较简单吧 就是跑四遍最短路,然后把最短路上的边拿出来 ...
- P2149 Elaxia的路线
P2149 Elaxia的路线 题意简述: 在一个n(n<=1500)个点的无向图里找两对点之间的最短路径的最长重合部分,即在保证最短路的情况下两条路径的最长重合长度(最短路不为一) 思路: 两 ...
- 洛谷 P4478 [BJWC2018]上学路线
洛谷 P4478 [BJWC2018]上学路线 原题 神仙题orz,竟然没有1A....容斥+卢卡斯+crt?? 首先用容斥做,记\(f[i][0/1]\)表示到i号点经过了奇数/偶数个点的方案数,因 ...
- 洛谷 P2149 [SDOI2009]Elaxia的路线 解题报告
P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia ...
- 洛谷——P2149 [SDOI2009]Elaxia的路线
P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每 ...
- 【模板】矩阵快速幂 洛谷P2233 [HNOI2002]公交车路线
P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另 ...
- Java实现 洛谷 Car的旅行路线
输入输出样例 输入样例#1: 1 3 10 1 3 1 1 1 3 3 1 30 2 5 7 4 5 2 1 8 6 8 8 11 6 3 输出样例#1: 47.5 import java.util. ...
- 洛谷 P2149 [SDOI2009]Elaxia的路线
题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的 ...
- 洛谷—— P2149 [SDOI2009]Elaxia的路线
https://www.luogu.org/problem/show?pid=2149 题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两 ...
随机推荐
- MyBatis.3.CRUD
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE mapper PUBLIC "-/ ...
- opncv视频资料
链接: http://pan.baidu.com/s/1i37nXSL 密码: 3xnd这一套opncv资料包括视频和pdf资料
- c/c++基本数据类型转换
If either operand is of type long double, the other operand is converted to type long double. If the ...
- 网络优化之net.ipv4.tcp_tw_recycle参数
不要在linux上启用net.ipv4.tcp_tw_recycle参数 2015/07/27 CFC4N 本文为翻译英文BLOG<Coping with the TCP TIME-WAIT ...
- P3014 [USACO11FEB]牛线Cow Line && 康托展开
康托展开 康托展开为全排列到一个自然数的映射, 空间压缩效率很高. 简单来说, 康托展开就是一个全排列在所有此序列全排列字典序中的第 \(k\) 大, 这个 \(k\) 即是次全排列的康托展开. 康托 ...
- 关于dubbo的架构
dubbo是国内一个十分受欢迎的分布式rpc框架. 这篇博客是从dubbo官网出发,来说明下dubbo的技术架构.首先我们看下官网的架构图. 节点角色说明: Provider: 暴露服务的服务提供方. ...
- noi题库(noi.openjudge.cn) 1.11编程基础之二分查找T01、02、04
T01 查找最接近的元素 描述 在一个非降序列中,查找与给定值最接近的元素. 输入 第一行包含一个整数n,为非降序列长度.1 <= n <= 100000.第二行包含n个整数,为非降序列各 ...
- appium 使用过程问题踩坑-笔记
问题1:虚拟设备选用问题 运行脚本抛出异常,创建session对象失败 排查过程:在进入cmd模式下: ①adb devices --ok ②appium-doctor --ok ③appium ...
- eclipse 无法解析导入 javax.servlet 的解决方法
出现上述问题的原因是你的Eclipse项目没有导入JSP运行所需要的Tomcat类库,主要是servlet-api.jar文件(或者servlet.jar),tomcat容器里面有这文件,在以下位置: ...
- JavaScript实现单向链表
JavaScript 本身提供了十分好用的数据类型,以满足大家的日常使用.单靠 Array 和 Object 也的确足够应付日常的绝大部分需求,这也导致了很多前端er对数据结构这一块不是十分的了解. ...