You are given an integer array A.  From some starting index, you can make a series of jumps.  The (1st, 3rd, 5th, ...) jumps in the series are called odd numbered jumps, and the (2nd, 4th, 6th, ...) jumps in the series are called even numbered jumps.

You may from index i jump forward to index j (with i < j) in the following way:

  • During odd numbered jumps (ie. jumps 1, 3, 5, ...), you jump to the index j such that A[i] <= A[j] and A[j] is the smallest possible value.  If there are multiple such indexes j, you can only jump to the smallest such index j.
  • During even numbered jumps (ie. jumps 2, 4, 6, ...), you jump to the index j such that A[i] >= A[j] and A[j] is the largest possible value.  If there are multiple such indexes j, you can only jump to the smallest such index j.
  • (It may be the case that for some index i, there are no legal jumps.)

A starting index is good if, starting from that index, you can reach the end of the array (index A.length - 1) by jumping some number of times (possibly 0 or more than once.)

Return the number of good starting indexes.

Example 1:

Input: [10,13,12,14,15]
Output: 2
Explanation:
From starting index i = 0, we can jump to i = 2 (since A[2] is the smallest among A[1], A[2], A[3], A[4] that is greater or equal to A[0]), then we can't jump any more.
From starting index i = 1 and i = 2, we can jump to i = 3, then we can't jump any more.
From starting index i = 3, we can jump to i = 4, so we've reached the end.
From starting index i = 4, we've reached the end already.
In total, there are 2 different starting indexes (i = 3, i = 4) where we can reach the end with some number of jumps.

Example 2:

Input: [2,3,1,1,4]
Output: 3
Explanation:
From starting index i = 0, we make jumps to i = 1, i = 2, i = 3: During our 1st jump (odd numbered), we first jump to i = 1 because A[1] is the smallest value in (A[1], A[2], A[3], A[4]) that is greater than or equal to A[0]. During our 2nd jump (even numbered), we jump from i = 1 to i = 2 because A[2] is the largest value in (A[2], A[3], A[4]) that is less than or equal to A[1]. A[3] is also the largest value, but 2 is a smaller index, so we can only jump to i = 2 and not i = 3. During our 3rd jump (odd numbered), we jump from i = 2 to i = 3 because A[3] is the smallest value in (A[3], A[4]) that is greater than or equal to A[2]. We can't jump from i = 3 to i = 4, so the starting index i = 0 is not good. In a similar manner, we can deduce that:
From starting index i = 1, we jump to i = 4, so we reach the end.
From starting index i = 2, we jump to i = 3, and then we can't jump anymore.
From starting index i = 3, we jump to i = 4, so we reach the end.
From starting index i = 4, we are already at the end.
In total, there are 3 different starting indexes (i = 1, i = 3, i = 4) where we can reach the end with some number of jumps.

Example 3:

Input: [5,1,3,4,2]
Output: 3
Explanation:
We can reach the end from starting indexes 1, 2, and 4.

Note:

  1. 1 <= A.length <= 20000
  2. 0 <= A[i] < 100000

Approach: #1: DP + Binary search. [C++]

class Solution {
public:
int oddEvenJumps(vector<int>& A) {
const int n = A.size();
vector<vector<int>> dp(n+1, vector<int>(2, 0));
dp[n-1][0] = dp[n-1][1] = 1;
map<int, int> m;
m[A[n-1]] = n - 1;
int ans = 1;
for (int i = n-2; i >= 0; --i) {
auto u = m.lower_bound(A[i]);
if (u != m.end()) {
int idx = u->second;
dp[i][1] = dp[idx][0];
}
auto d = m.upper_bound(A[i]);
if (d != m.begin()) {
int idx = prev(d)->second;
dp[i][0] = dp[idx][1];
}
if (dp[i][1] == 1) ++ans;
m[A[i]] = i;
}
return ans;
}
};

  

Approach #2: DP. [Java]

class Solution {
public int oddEvenJumps(int[] A) {
int n = A.length, res = 1;
boolean[] higher = new boolean[n], lower = new boolean[n];
higher[n-1] = lower[n-1] = true;
TreeMap<Integer, Integer> map = new TreeMap<>();
map.put(A[n-1], n-1); for (int i = n-2; i >= 0; --i) {
Map.Entry hi = map.ceilingEntry(A[i]), lo = map.floorEntry(A[i]);
if (hi != null) higher[i] = lower[(int)hi.getValue()];
if (lo != null) lower[i] = higher[(int)lo.getValue()];
if (higher[i]) ++res;
map.put(A[i], i);
} return res;
}
}

  

Analysis:

Odd jump: find the smallest value greater than self(up)

Even jump: find the largest value smaller than self(down)

map<int, int> -> min index of the given value

dp[i][1] : can reach end starting with a up jump

dp[i][0] : can reach end starting with a down jump

Start from the (n-2)th element, find a valid up jump index j (lower_bound), and find a valid down jump index k (prev(upper_bound)).

dp[i][1] = dp[j][0]; // next jump will be odd (down)

dp[i][0] = dp[j][1]; // next jump will be even (up)

ans = sum(dp[*][1])

Time Complexity: O(nlogn)

Space Complexity: O(n)

Reference:

https://zxi.mytechroad.com/blog/dynamic-programming/leetcode-975-odd-even-jump/

https://blog.csdn.net/yaomingyang/article/details/78748130

http://www.cplusplus.com/reference/iterator/prev/

https://docs.oracle.com/javase/8/docs/api/java/util/Map.Entry.html

975. Odd Even Jump的更多相关文章

  1. LC 975. Odd Even Jump

    You are given an integer array A.  From some starting index, you can make a series of jumps.  The (1 ...

  2. 【LeetCode】975. Odd Even Jump 解题报告(C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 日期 题目地址:https://leetc ...

  3. 「Leetcode」975. Odd Even Jump(Java)

    分析 注意到跳跃的方向是一致的,所以我们需要维护一个数接下来跳到哪里去的问题.换句话说,就是对于一个数\(A_i\),比它大的最小值\(A_j\)是谁?或者反过来. 这里有两种方案,一种是单调栈,简单 ...

  4. [Swift]LeetCode975. 奇偶跳 | Odd Even Jump

    You are given an integer array A.  From some starting index, you can make a series of jumps.  The (1 ...

  5. leetcode hard

    # Title Solution Acceptance Difficulty Frequency     4 Median of Two Sorted Arrays       27.2% Hard ...

  6. Swift LeetCode 目录 | Catalog

    请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift    说明:题目中含有$符号则为付费题目. 如 ...

  7. 【Leetcode周赛】从contest-111开始。(一般是10个contest写一篇文章)

    Contest 111 (题号941-944)(2019年1月19日,补充题解,主要是943题) 链接:https://leetcode.com/contest/weekly-contest-111 ...

  8. ARM详细指令集

    算术和逻辑指令 ADC : 带进位的加法 (Addition with Carry) ADC{条件}{S} <dest>, <op 1>, <op 2> dest ...

  9. Complete The Pattern #6 - Odd Ladder

    Complete The Pattern #6 - Odd Ladder Task: You have to write a function pattern which creates the fo ...

随机推荐

  1. Connecting to MQSeries with .NET

    By connecting to MQSeries withing a .NET application, first it has to be done is to install MQ Serie ...

  2. db2 创建用户及授权

    1.创建系统用户dbuser/ehong隶属于db2users 2.C:\Program Files\IBM\SQLLIB\BIN>db2 connect to AKZXTEST数据库连接信息  ...

  3. FTP 搭建

    FTP 搭建 FTP 是 File Transfer Protocol(文件传输协议)的英文简称,它工作在 0SI 模型的第七层,TCP 模型的第四屋上,即应用层. 一.FTP 简介 FTP 会话时包 ...

  4. linux 常用压缩打包和解压命令

    ## zcvf gzip jcvf bzip2 gunzip  tar zxvf  jxvf  

  5. 【Web】Nginx下载与安装

    Nginx介绍 Nginx ("engine x") 是一个高性能的HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP服务器.Nginx是由Igor Sysoev为俄罗 ...

  6. XE7 里面添加自定义View

    经过xe4,xe5,xe6 这么几个版本的磨合,易博龙终于在今年9月推出了统一的多平台开发版本-XE7. 经过最近几天的测试,非常不错.如果各位同学在做移动开发,强烈建议使用XE7. 前面几个版本可以 ...

  7. linux配置ip 网关 和dns(转)

    原文地址:http://blog.csdn.net/ztz0223/article/details/5800665 Linux下面配置ip很容易的,并没有网上说的那么复杂,我的linux系统是rhel ...

  8. 函数作用域和块级作用域--你不知道的JavaScript

    et和const在{}内声明都会变为外部不能访问的值,但是const声明的是常量,也不能修改 函数是 JavaScript 中最常见的作用域单元.本质上,声明在一个函数内部的变量或函数会在所处的作用域 ...

  9. PS各个工具的字母快捷键和英文全名

    选框-Marquee(M) 移动-move(V) 套索-Lasso(L) 魔棒-Wand(W) 喷枪-injection lance (J) 画笔-Brush (B) 铅笔-pencil(N) 橡皮图 ...

  10. oss上传文件夹-cloud2-泽优软件

    泽优软件云存储上传控件(cloud2)支持上传整个文件夹,并在云空间中保留文件夹的层级结构,同时在数据库中也写入层级结构信息.文件与文件夹层级结构关系通过id,pid字段关联. 本地文件夹结构 文件 ...