本文转自:http://www.cnblogs.com/xybaby/p/6322376.html

作者:xybaby  

注:本文在原文基础上做了一点点修改,仅仅作为个人理解与记忆,建议直接查看原文。

generator使用场景:

  1  当我们需要一个公用的,按需生成的数据

  2  某个事情执行一部分,另一部分在某个事件发生后再执行下一部分,实现异步。

注意事项:

1  yield from generator_obj 本质上类似于 for item in generator_obj: yield item

2  generator函数中允许使用return,但是return 后不允许有返回值

本文将由浅入深详细介绍yield以及generator,包括以下内容:什么generator,生成generator的方法,generator的特点,generator基础及高级应用场景,generator使用中的注意事项。本文不包括enhanced generator即pep342相关内容,这部分内容在之后的博文介绍。

generator基础

  

在python的函数(function)定义中,只要出现了yield表达式(Yield expression),那么事实上定义的是一个generator function, 调用这个generator function返回值是一个generator。这根普通的函数调用有所区别,For example:

def gen_generator():
yield 1 def gen_value():
return 1 if __name__ == '__main__':
ret = gen_generator()
print ret, type(ret) #<generator object gen_generator at 0x02645648> <type 'generator'>
ret = gen_value()
print ret, type(ret) # 1 <type 'int'>

  从上面的代码可以看出,gen_generator函数返回的是一个generator实例,generator有以下特别:

  • 遵循迭代器(iterator)协议,迭代器协议需要实现__iter__、next接口
  • 能过多次进入、多次返回,能够暂停函数体中代码的执行

  下面看一下测试代码:

>>> def gen_example():

...     print 'before any yield'

...     yield 'first yield'

...     print 'between yields'

...     yield 'second yield'

...     print 'no yield anymore'

...

>>> gen = gen_example()

>>> gen.next()    # 第一次调用next

before any yield

'first yield'

>>> gen.next()    # 第二次调用next

between yields

'second yield'

>>> gen.next()    # 第三次调用next

no yield anymore

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

StopIteratio


  调用gen example方法并没有输出任何内容,说明函数体的代码尚未开始执行。当调用generator的next方法,generator会执行到yield 表达式处,返回yield表达式的内容,然后暂停(挂起)在这个地方,所以第一次调用next打印第一句并返回“first yield”。 暂停意味着方法的局部变量,指针信息,运行环境都保存起来,直到下一次调用next方法恢复。第二次调用next之后就暂停在最后一个yield,再次调用next()方法,则会抛出StopIteration异常。 

  因为for语句能自动捕获StopIteration异常,所以generator(本质上是任何iterator)较为常用的方法是在循环中使用: 

1 def generator_example():
2 yield 1
3 yield 2
4
5 if __name__ == '__main__':
6 for e in generator_example():
7 print e
8 # output 1 2

  generator function产生的generator与普通的function有什么区别呢

  (1)function每次都是从第一行开始运行,而generator从上一次yield开始的地方运行

  (2)function调用一次返回一个(一组)值,而generator可以多次返回

  (3)function可以被无数次重复调用,而一个generator实例在yield最后一个值 或者return之后就不能继续调用了

  在函数中使用Yield,然后调用该函数是生成generator的一种方式。另一种常见的方式是使用generator expression,For example:
  >>> gen = (x * x for x in xrange(5))
  >>> print gen
  <generator object <genexpr> at 0x02655710>
  

generator应用

generator基础应用  

  为什么使用generator呢,最重要的原因是可以按需生成并“返回”结果,而不是一次性产生所有的返回值,况且有时候根本就不知道“所有的返回值”。比如对于下面的代码  

1     RANGE_NUM = 100
2 for i in [x*x for x in range(RANGE_NUM)]: # 第一种方法:对列表进行迭代
3 # do sth for example
4 print i
5
6 for i in (x*x for x in range(RANGE_NUM)): # 第二种方法:对generator进行迭代
7 # do sth for example
8 print i

  在上面的代码中,两个for语句输出是一样的,代码字面上看来也就是中括号与小括号的区别。但这点区别差异是很大的,第一种方法返回值是一个列表,第二个方法返回的是一个generator对象。随着RANGE_NUM的变大,第一种方法返回的列表也越大,占用的内存也越大;但是对于第二种方法没有任何区别。

  我们再来看一个可以“返回”无穷多次的例子:

def fib():
a, b = 1, 1
while True:
yield a
a, b = b, a+b

这个generator拥有生成无数多“返回值”的能力,使用者可以自己决定什么时候停止迭代

generator高级应用

使用场景一:  

  Generator可用于产生数据流, generator并不立刻产生返回值,而是等到被需要的时候才会产生返回值,相当于一个主动拉取的过程(pull),比如现在有一个日志文件,每行产生一条记录,对于每一条记录,不同部门的人可能处理方式不同,但是我们可以提供一个公用的、按需生成的数据流。

 1 def gen_data_from_file(file_name):
2 for line in file(file_name):
3 yield line
4
5 def gen_words(line):
6 for word in (w for w in line.split() if w.strip()):
7 yield word
8
9 def count_words(file_name):
10 word_map = {}
11 for line in gen_data_from_file(file_name):
12 for word in gen_words(line):
13 if word not in word_map:
14 word_map[word] = 0
15 word_map[word] += 1
16 return word_map
17
18 def count_total_chars(file_name):
19 total = 0
20 for line in gen_data_from_file(file_name):
21 total += len(line)
22 return total
23
24 if __name__ == '__main__':
25 print count_words('test.txt'), count_total_chars('test.txt')

  上面的例子来自08年的PyCon一个讲座。gen_words gen_data_from_file是数据生产者,而count_words count_total_chars是数据的消费者。可以看到,数据只有在需要的时候去拉取的,而不是提前准备好。另外gen_words中 (w for w in line.split() if w.strip()) 也是产生了一个generator

使用场景二:

  一些编程场景中,一件事情可能需要执行一部分逻辑,然后等待一段时间、或者等待某个异步的结果、或者等待某个状态,然后继续执行另一部分逻辑。比如微服务架构中,服务A执行了一段逻辑之后,去服务B请求一些数据,然后在服务A上继续执行。或者在游戏编程中,一个技能分成分多段,先执行一部分动作(效果),然后等待一段时间,然后再继续。对于这种需要等待、而又不希望阻塞的情况,我们一般使用回调(callback)的方式。下面举一个简单的例子:

1 def do(a):
2 print 'do', a
3 CallBackMgr.callback(5, lambda a = a: post_do(a))
4
5 def post_do(a):
6 print 'post_do', a

  这里的CallBackMgr注册了一个5s后的时间,5s之后再调用lambda函数,可见一段逻辑被分裂到两个函数,而且还需要上下文的传递(如这里的参数a)。我们用yield来修改一下这个例子,yield返回值代表等待的时间。

1 @yield_dec
2 def do(a):
3 print 'do', a
4 yield 5
5 print 'post_do', a

  这里需要实现一个YieldManager, 通过yield_dec这个decrator将do这个generator注册到YieldManager,并在5s后调用next方法。Yield版本实现了和回调一样的功能,但是看起来要清晰许多。下面给出一个简单的实现以供参考:

  

# -*- coding:utf-8 -*-
import sys
# import Timer
import types
import time class YieldManager(object):
def __init__(self, tick_delta = 0.01):
self.generator_dict = {}
# self._tick_timer = Timer.addRepeatTimer(tick_delta, lambda: self.tick()) def tick(self):
cur = time.time()
for gene, t in self.generator_dict.items():
if cur >= t:
self._do_resume_genetator(gene,cur) def _do_resume_genetator(self,gene, cur ):
try:
self.on_generator_excute(gene, cur)
except StopIteration,e:
self.remove_generator(gene)
except Exception, e:
print 'unexcepet error', type(e)
self.remove_generator(gene) def add_generator(self, gen, deadline):
self.generator_dict[gen] = deadline def remove_generator(self, gene):
del self.generator_dict[gene] def on_generator_excute(self, gen, cur_time = None):
t = gen.next()
cur_time = cur_time or time.time()
self.add_generator(gen, t + cur_time) g_yield_mgr = YieldManager() def yield_dec(func):
def _inner_func(*args, **kwargs):
gen = func(*args, **kwargs)
if type(gen) is types.GeneratorType:
g_yield_mgr.on_generator_excute(gen) return gen
return _inner_func @yield_dec
def do(a):
print 'do', a
yield 2.5
print 'post_do', a
yield 3
print 'post_do again', a if __name__ == '__main__':
do(1)
for i in range(1, 10):
print 'simulate a timer, %s seconds passed' % i
time.sleep(1)
g_yield_mgr.tick()

注意事项:

(1)Yield是不能嵌套的!

 1 def visit(data):
2 for elem in data:
3 if isinstance(elem, tuple) or isinstance(elem, list):
4 visit(elem) # here value retuened is generator
5 else:
6 yield elem
7
8 if __name__ == '__main__':
9 for e in visit([1, 2, (3, 4), 5]):
10 print e

  上面的代码访问嵌套序列里面的每一个元素,我们期望的输出是1 2 3 4 5,而实际输出是1  2  5 。为什么呢,如注释所示,visit是一个generator function,所以第4行返回的是generator object,而代码也没这个generator实例迭代。那么改改代码,对这个临时的generator 进行迭代就行了。

def visit(data):
for elem in data:
if isinstance(elem, tuple) or isinstance(elem, list):
for e in visit(elem):
yield e
else:
yield elem

或者在python3.3中 可以使用yield from,这个语法是在pep380加入的

1 def visit(data):
2 for elem in data:
3 if isinstance(elem, tuple) or isinstance(elem, list):
4 yield from visit(elem)
5 else:
6 yield elem

(2)generator function中使用return

  在python doc中,明确提到是可以使用return的,当generator执行到这里的时候抛出StopIteration异常。

 1 def gen_with_return(range_num):
2 if range_num < 0:
3 return
4 else:
5 for i in xrange(range_num):
6 yield i
7
8 if __name__ == '__main__':
9 print list(gen_with_return(-1))
10 print list(gen_with_return(1))

  但是,generator function中的return是不能带任何返回值的

1 def gen_with_return(range_num):
2 if range_num < 0:
3 return 0
4 else:
5 for i in xrange(range_num):
6 yield i

  上面的代码会报错:SyntaxError: 'return' with argument inside generator

References:

http://www.dabeaz.com/generators-uk/
https://www.python.org/dev/peps/pep-0380/
http://stackoverflow.com/questions/231767/what-does-the-yield-keyword-do
http://stackoverflow.com/questions/15809296/python-syntaxerror-return-with-argument-inside-generator

 

(转)Python中的generator详解的更多相关文章

  1. python中threading模块详解(一)

    python中threading模块详解(一) 来源 http://blog.chinaunix.net/uid-27571599-id-3484048.html threading提供了一个比thr ...

  2. Python中time模块详解

    Python中time模块详解 在平常的代码中,我们常常需要与时间打交道.在Python中,与时间处理有关的模块就包括:time,datetime以及calendar.这篇文章,主要讲解time模块. ...

  3. 第7.19节 Python中的抽象类详解:abstractmethod、abc与真实子类

    第7.19节 Python中的抽象类详解:abstractmethod.abc与真实子类 一.    引言 前面相关的章节已经介绍过,Python中定义某种类型是以实现了该类型对应的协议为标准的,而不 ...

  4. python中常用模块详解二

    log模块的讲解 Python 使用logging模块记录日志涉及四个主要类,使用官方文档中的概括最为合适: logger提供了应用程序可以直接使用的接口API: handler将(logger创建的 ...

  5. 76.Python中F表达式详解

    F表达式是用来优化ORM操作数据库的. 举个例子:我们做口罩的公司要将所有员工的薪水增加2000元,如果按照正常的流程,应该是先从数据库中提取所有的员工的工资到Python内存中,然后使用Python ...

  6. python 中的unicode详解

    通过例子来看问题是比较容易懂的. 首先来看,下面这个是我新建的一个txt文件,名字叫做ivan_utf8.txt,然后里面随便编辑了一些东西. 然后来用控制台打开这个文件,同样也是截图: 这里就是简单 ...

  7. python 中model.py详解

    model详解 Django中遵循 Code Frist 的原则,即:根据代码中定义的类来自动生成数据库表. 创建表 基本结构 from django.db import models # Creat ...

  8. python 中的map 详解

    python中的map函数应用于每一个可迭代的项,返回的是一个结果list.如果有其他的可迭代参数传进来,map函数则会把每一个参数都以相应的处理函数进行迭代处理.map()函数接收两个参数,一个是函 ...

  9. Python 中的设计模式详解之:策略模式

    虽然设计模式与语言无关,但这并不意味着每一个模式都能在每一门语言中使用.<设计模式:可复用面向对象软件的基础>一书中有 23 个模式,其中有 16 个在动态语言中“不见了,或者简化了”. ...

随机推荐

  1. maven实战读书笔记(一)

    环境变量设置 MAVEN_HOME:G:\maven-3.2\apache-maven-3.2.5 Path: G:\maven-3.2\apache-maven-3.2.5\bin 其实正确的设置应 ...

  2. Daily Scrumming* 2015.10.25(Day 6)

    一.总体情况总结 1.UI今日总结:初步设计了社团详情界面 2.后端今日总结:讨论并设计数据库,表内容,属性和相互联系等,并在rails的activeRecord和activeModel中实现,同时设 ...

  3. c# 写文件注意问题及用例展示

    以txt写string举例,正确代码如下: private void xie() { FileStream fs = new FileStream("1.txt", FileMod ...

  4. 第二阶段每日站立会议Forth Day

    昨天对于程序中的字体显示进行细化修改,使界面更美观 今天准备继续调试手机界面 遇到的问题:上几次Tomcat运行正常,今天突然出现问题,Tomcat服务可以打开,但是无法连接到数据库

  5. 乱码之UTF-8 &GBK

    在提交JSP时对于乱码问题,首先我们要搞清楚为什么会出现乱码? 看JSP的头文件:<%@ page contentType="text/html;charset=UTF-8" ...

  6. struts2与springmvc的区别

    1 机制不同 springmvc的入口是servlet,struts2的入口是filter,导致了二者的机制不同: 2 性能不同 spring会稍微比struts快.spring mvc是基于方法的设 ...

  7. windows多线程(七) 事件event

    前面说的互斥量Mutex与关键段CriticalSection都不能实现线程的同步,只能实现互斥,接下来我们用时间event就可以实现线程的同步了,事件也是一个内核对象. 一.相关函数说明 (一) 创 ...

  8. ng-include 上ng-controller 无法获取控件

    A.Html内容如下 <div> <div kendo-grid="testGrid" k-options="testOptions"> ...

  9. Asp.Net Core实现文件上传

    1. Asp.Net Core Mvc方式 public class UploadController : Controller { private IHostingEnvironment _host ...

  10. SSL证书部署

    SSL证书部署指南 https://www.trustauth.cn/ssl-guide