1193: [HNOI2006]马步距离

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2015  Solved: 914
[Submit][Status][Discuss]

Description

在国际象棋和中国象棋中,马的移动规则相同,都是走“日”字,我们将这种移动方式称为马步移动。如图所示,
从标号为 0 的点出发,可以经过一步马步移动达到标号为 1 的点,经过两步马步移动达到标号为 2 的点。任给
平面上的两点 p 和 s ,它们的坐标分别为 (xp,yp) 和 (xs,ys) ,其中,xp,yp,xs,ys 均为整数。从 (xp,yp) 
出发经过一步马步移动可以达到 (xp+1,yp+2)、(xp+2,yp+1)、(xp+1,yp-2)、(xp+2,yp-1)、(xp-1,yp+2)、(xp-2,
yp+1)、(xp-1,yp-2)、(xp-2,yp-1)。假设棋盘充分大,并且坐标可以为负数。现在请你求出从点 p 到点 s 至少
需要经过多少次马步移动?

Input

只包含4个整数,它们彼此用空格隔开,分别为xp,yp,xs,ys。并且它们的都小于10000000。

Output

含一个整数,表示从点p到点s至少需要经过的马步移动次数。

Sample Input

1 2 7 9

Sample Output

5

HINT

//大范围贪心,小范围bfs即可,贪心时横纵距离谁大谁减2,还要横纵距离控制在不小于起点。以前做过一个大范围贪心小范围dp。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
typedef long long ll;
const int MAXN=;
bool vis[][];
int dir[][]={,,,-,,,,-,-,,-,-,-,,-,-};
int dfs(int sx,int sy,int ex,int ey)
{
queue<int>q;
vis[sx][sy]=;
q.push(sx);q.push(sy);q.push();
while(!q.empty()){
int x=q.front();q.pop();
int y=q.front();q.pop();
int cnt=q.front();q.pop();
if(x==ex&&y==ey) return cnt;
for(int i=;i<;i++){
int xx=x+dir[i][],yy=y+dir[i][];
if(xx<||xx>||yy<||yy>) continue;
if(vis[xx][yy]) continue;
vis[xx][yy]=;
q.push(xx);q.push(yy);q.push(cnt+);
}
}
}
int main()
{
int sx,sy,ex,ey;
memset(vis,,sizeof(vis));
scanf("%d%d%d%d",&sx,&sy,&ex,&ey);
ex-=sx;ey-=sy;
sx=sy=;
if(ex<) ex=-ex;
if(ey<) ey=-ey;
ex+=;ey+=;
ll ans=;
while(ex-sx>=||ey-sy>=){
if(ex>=ey){
ex-=;
if(ey>) ey-=;
else ey+=;
}else{
ey-=;
if(ex>) ex-=;
else ex+=;
}
ans++;
}
ans+=dfs(sx,sy,ex,ey);
printf("%lld\n",ans);
return ;
}

bzoj 1193 贪心+bfs的更多相关文章

  1. bzoj 1193 贪心

    如果两点的曼哈顿距离在一定范围内时我们直接暴力搜索就可以得到答案,那么开始贪心的跳,判断两点横纵坐标的差值,差值大的方向条2,小的条1,不断做,直到曼哈顿距离较小时可以暴力求解. 备注:开始想的是确定 ...

  2. BZOJ 1193 [HNOI2006]马步距离:大范围贪心 小范围暴搜

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1193 题意: 给定起点(px,py).终点(sx,sy).(x,y < 100000 ...

  3. BZOJ 1193 搜索+贪心

    预处理出100*100以内的最优解 贪心走日 判断是0*4还是2*4 搞定 //By SiriusRen #include <queue> #include <cstdio> ...

  4. bzoj1193: [HNOI2006]马步距离(贪心+bfs)

    1193: [HNOI2006]马步距离 题目:传送门 题解: 毒瘤题... 模拟赛时的一道题,刚开始以为是一道大难题...一直在拼命找规律 结果.... 还是说正解吧: 暴力的解法肯定是直接bfs, ...

  5. bzoj 1193

    http://www.lydsy.com/JudgeOnline/problem.php?id=1193 大范围贪心,小范围宽搜. 膜拜大神 http://blog.csdn.net/u0129155 ...

  6. #292 (div.2) D.Drazil and Tiles (贪心+bfs)

    Description Drazil created a following problem about putting  ×  tiles into an n × m grid: "The ...

  7. hdu-1728(贪心&&bfs的灵活运用吧)

    链接 [https://vjudge.net/contest/256476#problem/D] 题意 给定一个m × n (m行, n列)的迷宫,迷宫中有两个位置,gloria想从迷宫的一个位置走到 ...

  8. 清北学堂-贪心-bfs

    输入样例: 3 5 10 5 4 10 8 1 10 1 3 1 4 1 5 1 3 2 1 2 5 4 3 4 3 4 5 5 1 1 4 4 6 1 9 4 7 2 9 5 10 5 2 8 8 ...

  9. bzoj 2697 贪心

    就贪心就行了,首先可以看成n个格子,放物品,那么 一个物品假设放3个,放在1,k,n处,那么价值和放在1,n 是一样的,所以一个物品只放两个就行了,价值大的应该尽量放 在两边,那么排序之后模拟就行了 ...

随机推荐

  1. linux安装nginx并配置负载均衡

    linux上安装nginx比较简单: 前提是需要有gcc或者g++ 1.yum需要的依赖  yum -y install openssl openssl-devel 2.解压pcre库.zlib库   ...

  2. 奔跑吧DKY——团队Scrum冲刺阶段-Day 7

    今日完成任务 谭鑫:将人物图添加到游戏以及商店界面中,实现商店的选择换装功能 黄宇塘:制作人物图.背景图 赵晓海:阅读所有代码测试所有功能,美化部分界面 方艺雯:为商店界面及关于界面添加必要文字说明 ...

  3. Beat(2/7)

    目录 摘要 团队部分 个人部分 摘要 队名:小白吃 组长博客:hjj 作业博客:beta冲刺(2/7) 团队部分 后敬甲(组长) 过去两天完成了哪些任务 整理博客 做了点商家数据表格 接下来的计划 做 ...

  4. 1001 A+B

    代码链接 PDF链接 首先要说的是这道题的难点是如何把数字输出加入逗号,毕竟数据范围并没有超过Long.当然这个难点也不是问题,将数字转为字符串,C中就有这样的函数,然后再用 %3==0 这样来控制输 ...

  5. 文件名命工具类(将指定目录下的文件的type类型的文件,进行重命名,命名后的文件将去掉type)

    import java.io.File; /** * <b>function:</b> 文件命名工具类 * @author hoojo * @createDate 2012-5 ...

  6. vue-cli 安装时 npm 报错 errno -4048

    如何解决vue-cli 安装时  npm 报错 errno -4048 第一种解决方法:以管理身份运行cmd.exe 第二种解决办法:在dos窗口输入命令  npm cache clean  --fo ...

  7. Beta阶段——第二篇 Scrum 冲刺博客

    i. 提供当天站立式会议照片一张: ii. 每个人的工作 (有work item 的ID) (1) 昨天已完成的工作: 账单收支分明,剩余舍费关联成功 (2) 今天计划完成的工作: 账单删除功能,排序 ...

  8. Delphi控件-复合控件【转】

    复合控件复合控件是Delphi控件中非常重要的一种控件,复合控件就是将两个或两个以上的控件重新组合成一个新的控件.例如TspinEdit.TlabeledEdit.TDBNavigator等就是复合控 ...

  9. 开发 | 如何在微信小程序的页面间传递数据?

    我们在之前发布过小程序页面传值方法的简单介绍,说明了在小程序开发中,两种常见的页面之间传值方法. 本期,知晓程序(微信号 zxcx0101)为你带来的是「倒数记日」小程序开发者带来的,小程序开发中,有 ...

  10. wamp 开启短标签支持

    1.先使用phpinfo.php文件打印出信息 2.找到Loaded Configuration File   根据他的路径去修改php.ini文件 3.打开php.ini文件,搜索 short_op ...