题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=4126

Genghis Khan the Conqueror

Time Limit: 10000/5000 MS (Java/Others)
Memory Limit: 327680/327680 K (Java/Others)
#### 问题描述
> Genghis Khan(成吉思汗)(1162-1227), also known by his birth name Temujin(铁木真) and temple name Taizu(元太祖), was the founder of the Mongol Empire and the greatest conqueror in Chinese history. After uniting many of the nomadic tribes on the Mongolian steppe, Genghis Khan founded a strong cavalry equipped by irony discipline, sabers and powder, and he became to the most fearsome conqueror in the history. He stretched the empire that resulted in the conquest of most of Eurasia. The following figure (origin: Wikipedia) shows the territory of Mongol Empire at that time.
> Our story is about Jebei Noyan(哲别), who was one of the most famous generals in Genghis Khan’s cavalry. Once his led the advance troop to invade a country named Pushtuar. The knights rolled up all the cities in Pushtuar rapidly. As Jebei Noyan’s advance troop did not have enough soldiers, the conquest was temporary and vulnerable and he was waiting for the Genghis Khan’s reinforce. At the meantime, Jebei Noyan needed to set up many guarders on the road of the country in order to guarantee that his troop in each city can send and receive messages safely and promptly through those roads.
>
> There were N cities in Pushtuar and there were bidirectional roads connecting cities. If Jebei set up guarders on a road, it was totally safe to deliver messages between the two cities connected by the road. However setting up guarders on different road took different cost based on the distance, road condition and the residual armed power nearby. Jebei had known the cost of setting up guarders on each road. He wanted to guarantee that each two cities can safely deliver messages either directly or indirectly and the total cost was minimal.
>
> Things will always get a little bit harder. As a sophisticated general, Jebei predicted that there would be one uprising happening in the country sooner or later which might increase the cost (setting up guarders) on exactly ONE road. Nevertheless he did not know which road would be affected, but only got the information of some suspicious road cost changes. We assumed that the probability of each suspicious case was the same. Since that after the uprising happened, the plan of guarder setting should be rearranged to achieve the minimal cost, Jebei Noyan wanted to know the new expected minimal total cost immediately based on current information.
#### 输入
> There are no more than 20 test cases in the input.
> For each test case, the first line contains two integers N and M (1
> The next line contains an integer Q (1 For each test case, output a real number demonstrating the expected minimal total cost. The result should be rounded to 4 digits after decimal point.
####样例输入
> 3 3
> 0 1 3
> 0 2 2
> 1 2 5
> 3
> 0 2 3
> 1 2 6
> 0 1 6
> 0 0

样例输出

6.0000

题意

给你一个无相图,要你求最小生成树,现在有q个查询,每个查询会改变一条边的权值,然后再改回去,要你求出每种情况下的最小生成树,最后求一下平均。

题解

1、如果改变的边不在我们一开始求的mst上,那么答案就是mst。

2、否则,把指定的树边删了,我们得到两个顶点集,那么代替原先那条边的一定是这两个集合的最短距离。所以我们只要处理出best[u][v](既u所在的集合和v所在的集合的最短距离)就能处理第2种情况了。做法是两次树dp,具体看代码。

dp[u][v]:顶点u到集合v的最短距离。

best[u][v]:集合u到集合v的最短距离。

代码

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII; const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0); //start---------------------------------------------------------------------- const int maxn=3030; struct Edge {
int u,v,w;
Edge(int u,int v,int w):u(u),v(v),w(w) {}
Edge() {}
bool operator < (const Edge& tmp) const {
return w<tmp.w;
}
} egs[maxn*maxn]; int n,m;
int G[maxn][maxn],dp[maxn][maxn],best[maxn][maxn];
bool used[maxn][maxn];
VPII tre[maxn]; int fa[maxn];
int find(int x) {
return fa[x]=fa[x]==x?x:find(fa[x]);
} void dfs(int u,int fa,int rt) {
if(u!=rt&&!used[u][rt]) dp[rt][u]=min(dp[rt][u],G[rt][u]);
rep(i,0,tre[u].sz()) {
int v=tre[u][i].X;
if(v==fa) continue;
dfs(v,u,rt);
dp[rt][u]=min(dp[rt][u],dp[rt][v]);
}
} int dfs2(int u,int fa,int rt) {
if(best[u][rt]<100000000) return best[u][rt];
best[u][rt]=min(best[u][rt],dp[u][rt]);
for(int i=0; i<tre[u].sz(); i++) {
int v=tre[u][i].X;
if(v==fa) continue;
dfs2(v,u,rt);
best[u][rt]=min(best[u][rt],best[v][rt]);
}
return best[u][rt];
} ///最小生成树
double kruskal() {
sort(egs,egs+m);
double mst=0;
for(int i=0; i<m; i++) {
int u=egs[i].u,v=egs[i].v,w=egs[i].w;
int pu=find(u);
int pv=find(v);
if(pu!=pv) {
fa[pv]=pu;
tre[u].pb(mkp(v,w));
tre[v].pb(mkp(u,w));
used[u][v]=used[v][u]=1;
mst+=w;
}
}
return mst;
} void init() {
clr(G,0x3f);
clr(dp,0x3f);
clr(best,0x3f);
clr(used,0);
for(int i=0; i<n; i++) fa[i]=i,tre[i].clear();
} int main() {
while(scf("%d%d",&n,&m)==2&&n) {
init();
for(int i=0; i<m; i++) {
int u,v,w;
scf("%d%d%d",&u,&v,&w);
G[u][v]=G[v][u]=w;
egs[i]=Edge(u,v,w);
} double mst=kruskal(); ///树形dp,dp[u][v]表示u到以v为根的子树的最短距离,既点到集合的距离(以u为根开始遍历,且只用非树边更新)
for(int i=0; i<n; i++) dfs(i,-1,i); ///记忆化搜索,best[u][v]表示以u为根的子树和以v为根的子树之间的最短距离,既集合到集合的距离
///对于子树v,我们已经求出了所有的点u到它的最短距离,现在只要遍历所有的u,求出最小值即可。
for(int i=0; i<n; i++) {
for(int j=0; j<tre[i].sz(); j++) {
int v=tre[i][j].X;
best[i][v]=best[v][i]=dfs2(i,v,v);
}
} int q;
scf("%d",&q);
double ans=0;
rep(i,0,q) {
int u,v,w;
scf("%d%d%d",&u,&v,&w);
if(used[u][v]) {
///在树边上
ans+=mst-G[u][v]+min(w,best[u][v]);
} else {
///不在树边上
ans+=mst;
}
} prf("%.4lf\n",ans/q);
}
return 0;
} //end-----------------------------------------------------------------------

HDU 4126 Genghis Khan the Conqueror 最小生成树+树形dp的更多相关文章

  1. HDU 4126 Genghis Khan the Conqueror MST+树形dp

    题意: 给定n个点m条边的无向图. 以下m行给出边和边权 以下Q个询问. Q行每行给出一条边(一定是m条边中的一条) 表示改动边权. (数据保证改动后的边权比原先的边权大) 问:改动后的最小生成树的权 ...

  2. hdu4126Genghis Khan the Conqueror (最小生成树+树形dp)

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 327680/327680 K (Java/Others) Total Submiss ...

  3. HDU 4126 Genghis Khan the Conqueror (树形DP+MST)

    题意:给一图,n个点,m条边,每条边有个花费,给出q条可疑的边,每条边有新的花费,每条可疑的边出现的概率相同,求不能经过原来可疑边 (可以经过可疑边新的花费构建的边),注意每次只出现一条可疑的边,n个 ...

  4. UVA- 1504 - Genghis Khan the Conqueror(最小生成树-好题)

    题意: n个点,m个边,然后给出m条边的顶点和权值,其次是q次替换,每次替换一条边,给出每次替换的边的顶点和权值,然后求出这次替换的最小生成树的值; 最后要你输出:q次替换的平均值.其中n<30 ...

  5. hdu4126Genghis Khan the ConquerorGenghis Khan the Conqueror(MST+树形DP)

    题目请戳这里 题目大意:给n个点,m条边,每条边权值c,现在要使这n个点连通.现在已知某条边要发生突变,再给q个三元组,每个三元组(a,b,c),(a,b)表示图中可能发生突变的边,该边一定是图中的边 ...

  6. HDU4126Genghis Khan the Conqueror(最小生成树+并查集)

    Genghis Khan the Conqueror Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 327680/327680 K ...

  7. HDU-4126 Genghis Khan the Conqueror 树形DP+MST (好题)

    题意:给出一个n个点m条边的无向边,q次询问每次询问把一条边权值增大后问新的MST是多少,输出Sum(MST)/q. 解法:一开始想的是破圈法,后来想了想应该不行,破圈法应该只能用于加边的情况而不是修 ...

  8. 刷题总结——Genghis Khan the Conqueror (hdu4126)

    题目: Genghis Khan(成吉思汗)(1162-1227), also known by his birth name Temujin(铁木真) and temple name Taizu(元 ...

  9. Install Air Conditioning HDU - 4756(最小生成树+树形dp)

    Install Air Conditioning HDU - 4756 题意是要让n-1间宿舍和发电站相连 也就是连通嘛 最小生成树板子一套 但是还有个限制条件 就是其中有两个宿舍是不能连着的 要求所 ...

随机推荐

  1. 文本处理三剑客之 sed

    sed:文本流编辑器 主要是对文件的快速增删改查,查询功能中最常用的是过滤,取行 sed [选项] [sed内置命令字符] [输入文件] Options: -n:取消默认的sed输出,常与sed内置命 ...

  2. jQuery 基础与运用

    1.  jquery引入以及入口函数 引入方式 <!--方式一:下载到本地,引入路径--> <script src="jquery-3.1.1.min.js"&g ...

  3. PHP通过_call实现多继承

    原文地址:http://small.aiweimeng.top/index.php/archives/53.html 上一篇讲到php可以通过接口是实现代码的复用. 那么这篇文章简单介绍下使用_cal ...

  4. iOS 开发之UIStackView的应用

    ————————————————UIStackView的应用———————————————— 一:先讲下优势: 对于排布列表式控件的布局需求,用UIStackView控件,开发中为我们省去了繁琐的代码 ...

  5. python基础学习1-三元表达式和lambda表达式

    #!/usr/bin/env python # -*- coding:utf-8 -*- 三元运算 if else 的简写 name ="alex" if 1==1 else &q ...

  6. 24-[jQuery]-属性,文档,位置,筛选

    1.jquery的属性操作 jquery对象有它自己的属性和方法,我们先研究一下jquery的属性操作.jquery的属性操作模块分为四个部分:html属性操作,dom属性操作,类样式操作和值操作 h ...

  7. doc2vec使用笔记

    #!/usr/bin/env Python # coding:utf-8 #improt依赖包 # import sys # reload(sys) # sys.setdefaultencoding( ...

  8. Codeforces 938 D. Buy a Ticket (dijkstra 求多元最短路)

    题目链接:Buy a Ticket 题意: 给出n个点m条边,每个点每条边都有各自的权值,对于每个点i,求一个任意j,使得2×d[i][j] + a[j]最小. 题解: 这题其实就是要我们求任意两点的 ...

  9. TortoiseGit版本库中某个文件显示问号或叹号的问题解决办法

    这是一个怪问题,原因就是文件名大小写与版本库管理的大小写不一致. 解决办法: 1.先把文件夹中的物理文件名改为版本库浏览器中显示的文件名(版本库浏览器中的文件名不知道怎么改),改了以后这个文件图标就变 ...

  10. lua编程之元表与元方法

    一. 前言 lua是一种非常轻量的动态类型语言,在1993年由由Roberto Ierusalimschy.Waldemar Celes 和 Luiz Henrique de Figueiredo等人 ...