上一篇主要介绍了MongoDB的基本操作,包括创建、插入、保存、更新和查询等,链接为MongoDB基本操作

在本文中主要介绍MongoDB的聚合以及与Python的交互。

MongoDB聚合

什么是聚合

MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果。

聚合是基于数据处理的聚合管道,每个文档通过由多个阶段组成的管道,可以对每个阶段的管道进行分组、过滤等功能,然后经过一系列处理,输出结果。

语法:db.集合名称.aggregate({管道: {表达式}})

管道一般用于将当前命令的输出结果作为下一个命令的参数。

MongoDB的聚合管道将MongoDB文档在一个管道处理完毕后将结果传递给下一个管道处理。管道操作是可以重复的。

常用管道

下面介绍常用的管道:

  • $group:将集合中的文档分组,可用于统计结果
  • $match:过滤数据,只输出符合条件的文档
  • $project:修改输入文档的结构,如重命名、增加、删除字段,也可用于创建计算结果以及嵌套文档
  • $sort:将输入文档排序后输出
  • $limit:限制聚合管道返回的文档数
  • $skip:跳过指定数量的文档,并返回余下的数据
  • $unwind:将数组类型的字段进行拆分

常用聚合表达式

下面介绍常用的聚合表达式:

  • $sum:计算总和,$sum:1表示以1计数
  • $avg:计算平均值
  • $min:获取最小值
  • $max:获取最大值
  • $push:在结果文档中插入值到一个数组中
  • $first:根据资源文档的排序,获取第一个文档数据
  • $last:根据资源文档的排序,获取最后一个文档数据

MongoDB聚合实例

现在假设集合studen中有以下数据:

{ "_id" : 1, "name" : "小然", "gender" : 1, "age" : 22, "score" : 95 }
{ "_id" : 2, "name" : "小红", "gender" : 0, "age" : 18, "score" : 80 }
{ "_id" : 3, "name" : "小亮", "gender" : 1, "age" : 19, "score" : 60 }
{ "_id" : 4, "name" : "小强", "gender" : 1, "age" : 23, "score" : 70 }
{ "_id" : 5, "name" : "小柔", "gender" : 0, "age" : 20, "score" : 85 }
{ "_id" : 6, "name" : "小雷", "gender" : 1, "age" : 25, "score" : 65 }
{ "_id" : 7, "name" : "小冉", "gender" : 0, "age" : 19, "score" : 70 }
{ "_id" : 8, "name" : "小晴", "gender" : 0, "age" : 18, "score" : 90 }
{ "_id" : 9, "name" : "小齐", "gender" : 1, "age" : 24, "score" : 50 }
  • 以性别进行分组
    db.students.aggregate({$group:{_id:"$gender"}})

输出结果为:

  • 统计整个文档,获得数据个数和平均分数
    db.students.aggregate({$group:{
_id:null,
count:{$sum:1},
avg_score:{$avg:"$score"}
}})

输出结果为:

  • 以性别进行分组,获取不同分组中数据的个数和平均分数
    db.students.aggregate({$group:{
_id:"$gender",
count:{$sum:1},
avg_score:{$avg:"$score"}
}})

输出结果为:

  • 使用$project修改输出结果
    db.students.aggregate(
{$group:{
_id:"$gender",
count:{$sum:1},
avg_score:{$avg:"$score"}}
},
{$project:{
gender:"$_id",
count:1,
_id:0,
avg_score:"$avg_score"}
}
)

输出结果为:

  • 使用$match选择分数大于等于70的学生,统计男生、女生的人数
    db.students.aggregate(
{$match:{score:{$gte:70}}},
{$group:{_id:"$gender",count:{$sum:1}}},
{$project:{gender:"$_id",count:1,_id:0}}
)

输出结果为:

MondoDB与Python的交互

pymongo的安装

使用Python操作MongoDB需要安装pymongo,安装方法很简单,使用pip install pymongo即可。

实例化并建立连接

首先从pymongo中导入MongoClient,然后实例化client,建立连接,代码如下:

    from pymongo import MongoClient

    client = MongoClient(host = "127.0.0.1",port = 27017)
#操作本机MongoDB可以写成client = MongoClient()
collection = client["test"]["test"]

常用操作实例

  • 插入一条数据
    collection.insert_one({"_id":0,"name":"test0"})
  • 插入多条数据
    data_list = [{"_id":i,"name":"test{}".format(i)} for i in range(10)]
collection.insert_many(data_list)
data_list = [{"name":"test{}".format(i)} for i in range(10)]
collection.insert_many(data_list)

插入后结果如下图所示,下面的操作都在此数据库上进行操作。

  • 查询一条记录
    print(collection.find_one({"name":"test2"}))

输出结果为:

  • 查询所有记录
    result = collection.find({"name":"test2"})
for i in result:
print(i)

输出结果为:

  • 更新一条数据
    collection.update_one({"name":"test1"},{"$set":{"name":"test10"}})

执行完操作后,数据库如下图所示:

  • 更新全部数据
    collection.update_many({"name":"test2"},{"$set":{"name":"test20"}})

执行完操作后,数据库如下图所示:

  • 删除一条数据
    collection.delete_one({"name":"test3"})

执行完操作后,数据库如下图所示:

  • 删除所有满足条件的数据
    collection.delete_many({"name":"test4"})

执行完操作后,数据库如下图所示:

结语

  • 本篇主要介绍了MongoDB的聚合操作以及与Python的交互,但对于我目前的学习阶段来说,只用到了Python中的插入数据语句,其他的操作基本没有用到。
  • 感谢大家的阅读,有错误希望大家能够指出,我会积极改正。

MongoDB的聚合操作以及与Python的交互的更多相关文章

  1. Yii2的mongodb的聚合操作

    最近项目使用到mongodb的聚合操作,但是yii文档中对这方面资料较少,记录下 $where['created_time'] = ['$gt' => "$start_date_str ...

  2. MongoDB入门---聚合操作&管道操作符&索引的使用

    经过前段时间的学习呢,我们对MongoDB有了一个大概的了解,接下来就要开始使用稍稍深入一点的东西了,首先呢,就是MongoDB中的聚合函数,跟mysql中的count等函数差不多.话不多说哈,我们先 ...

  3. mongodb的聚合操作

    在mongodb中有时候我们需要对数据进行分析操作,比如一些统计操作,这个时候简单的查询操作(find)就搞不定这些需求,因此就需要使用  聚合框架(aggregation) 来完成.在mongodb ...

  4. mongodb aggregate 聚合 操作(扁平化flatten)

    mongodb自带的函数非常多,最近用mongo做持久化数据库,遇到一个需求:子文档是个数组,把数组里的各个字段扁平化合到根文档中,查过资料后(主要是mongodb的文档和stackoverflow) ...

  5. mongodb高级聚合查询

    在工作中会经常遇到一些mongodb的聚合操作,特此总结下.mongo存储的可以是复杂类型,比如数组.对象等mysql不善于处理的文档型结构,并且聚合的操作也比mysql复杂很多. 注:本文基于 mo ...

  6. mongodb高级聚合查询(转)

    在工作中会经常遇到一些mongodb的聚合操作,特此总结下.mongo存储的可以是复杂类型,比如数组.对象等mysql不善于处理的文档型结构,并且聚合的操作也比mysql复杂很多. 注:本文基于 mo ...

  7. mongodb 高级聚合查询

    mongodb高级聚合查询   在工作中会经常遇到一些mongodb的聚合操作,特此总结下.mongo存储的可以是复杂类型,比如数组.对象等mysql不善于处理的文档型结构,并且聚合的操作也比mysq ...

  8. mongodb(五):聚合操作(python)

    pymongo的聚合操作 数据类型样式 /* 1 */ { "_id" : ObjectId("5e5a32fe2a89d7c2fc05b9fc"), &quo ...

  9. MongoDB 聚合操作

    在MongoDB中,有两种方式计算聚合:Pipeline 和 MapReduce.Pipeline查询速度快于MapReduce,但是MapReduce的强大之处在于能够在多台Server上并行执行复 ...

随机推荐

  1. Pig distinct用法举例

    dst = distinct data:   DISTINCT只能对整个记录(整行)去重,不能在字段级别去重.   触发reduce阶段   data = load 'data'; distinct ...

  2. shell黑名单

    #/bin/bash netstat -ant | " | awk '{print $5}' | grep -v "^10" | cut -d ":" ...

  3. c# 设计模式 之:装饰模式

    一.引言 在软件开发中,我们经常想要对一类对象添加不同的功能,例如要给手机添加贴膜,手机挂件,手机外壳等,如果此时利用继承来实现的话,就需要定义无数的类,如StickerPhone(贴膜是手机类).A ...

  4. javaweb 读取properties配置文件参数

    场景1:在servlet中读取properties配置文件参数 protected void doGet(HttpServletRequest request, HttpServletResponse ...

  5. Oracle EBS AR 客户取数SQL

    SELECT acct.cust_account_id, acct.party_id, acct.account_number, party.party_name, lkp1.meaning part ...

  6. [微信] 客服接口调用的时候返回 40003 Invalid OpenID

    首先确认收件人在24小时内主动向公众号发过消息.该消息的 FromUserId 即是客服消息的 touser 参数的 OpenId 2017-05-19 更新:可以使用UTF-8了 string ur ...

  7. Flask的数据库连接池 DBUtils

    Flask是没有ORM的操作的,如果在flask中连接数据库有两种方式 一.pymysql 二.SQLAlchemy 是python操作数据库的以一个库,能够进行orm映射官网文档 sqlchemy ...

  8. my sql 下左连接 右链接、内连接等应用,INNER JOIN LEFT JOIN RIGHT JOIN

    1.数据准备 建两个表格: create table student (idstu int, namestu ) ); ,"张三")(,"李四"),(,&quo ...

  9. Linux学习---Linux用户审计简单版

    [root@localhost root]# vim /etc/profile # SHENJI history USER=`whoami` USER_IP=`who -u am i 2>/de ...

  10. ZT pthread_cleanup_push()/pthread_cleanup_pop()的详解

    pthread_cleanup_push()/pthread_cleanup_pop()的详解 分类: Linux 2010-09-28 16:02 1271人阅读 评论(1) 收藏 举报 async ...