FFM原理及公式推导
原文来自:博客园(华夏35度)http://www.cnblogs.com/zhangchaoyang 作者:Orisun
上一篇讲了FM(Factorization Machines),说一说FFM(Field-aware Factorization Machines )。
回顾一下FM:
$\begin{equation}\hat{y}=w_0+\sum_{i=1}^n{w_ix_i}+\sum_{i=1}^n{\sum_{j=i+1}^n{v_i\cdot v_jx_ix_j}}\label{fm}\end{equation}$ (1)
$\cdot$表示向量的内积。样本$x$是$n$维向量,$x_i$是第$i$个维度上的值。$v_i$是$x_i$对应的长度为$K$的隐向量,$V$是模型参数,所以所有样本都使用同一个$V$,即$x_{1,1}$与$x_{2,1}$都使用$v_1$。
在FFM(Field-aware Factorization Machines )中每一维特征(feature)都归属于一个特定的field,field和feature是一对多的关系。比如
field | field1年龄 | field2城市 | field3性别 | |||
feature | x1年龄 | x2北京 | x3上海 | x4深圳 | x5男 | x6女 |
用户1 | 23 | 1 | 0 | 0 | 1 | 0 |
用户2 | 31 | 0 | 0 | 1 | 0 | 1 |
1. 对于连续特征,一个特征就对应一个Field。或者对连续特征离散化,一个分箱成为一个特征。比如
field | field1年龄 | |||
feature | 小于20 | 20-30 | 30-40 | 大于40 |
用户1 | 0 | 23 | 0 | 0 |
用户2 | 0 | 0 | 31 | 0 |
2. 对于离散特征,采用one-hot编码,同一种属性的归到一个Field
不论是连续特征还是离散特征,它们都有一个共同点:同一个field下只有一个feature的值不是0,其他feature的值都是0。
FFM模型认为$v_i$不仅跟$x_i$有关系,还跟与$x_i$相乘的$x_j$所属的Field有关系,即$v_i$成了一个二维向量$v_{F\times K}$,$F$是Field的总个数。FFM只保留了(1)中的二次项.
$\begin{equation}\hat{y}=\sum_{i=1}^n{\sum_{j=i+1}^n{v_{i,fj}\cdot v_{j,fi}x_ix_j}}\label{ffm}\end{equation}$(2)
以上文的表格数据为例,计算用户1的$\hat{y}$
$\hat{y}=v_{1,f2}\cdot v_{2,f1}x_1x_2+v_{1,f3}\cdot v_{3,f1}x_1x_3+v_{1,f4}\cdot v_{4,f1}x_1x_4+\cdots$
由于$x_2,x_3,x_4$属于同一个Field,所以$f2,f3,f4$可以用同一个变量来代替,比如就用$f2$。
$\hat{y}=v_{1,f2}\cdot v_{2,f1}x_1x_2+v_{1,f2}\cdot v_{3,f1}x_1x_3+v_{1,f2}\cdot v_{4,f1}x_1x_4+\cdots$
我们来算一下$\hat{y}$对$v_{1,f2}$的偏导。
$\hat{y}=v_{1,f2}\cdot v_{2,f1}x_1x_2+v_{1,f2}\cdot v_{3,f1}x_1x_3+v_{1,f2}\cdot v_{4,f1}x_1x_4+\cdots$
等式两边都是长度为$K$的向量。
注意$x_2,x_3,x_4$是同一个属性的one-hot表示,即$x_2,x_3,x_4$中只有一个为1,其他都为0。在本例中$x_3=x_4=0, x_2=1$,所以
$\frac{\partial{\hat{y}}}{\partial{v_{1,f2}}}=v_{2,f1}x_1x_2$
推广到一般情况:
$\begin{equation}\frac{\partial{\hat{y}}}{\partial{v_{i,fj}}}=v_{j,fi}x_ix_j\label{par}\end{equation}$(3)
$x_j$属于Field$fj$,且同一个Field里面的其他$x_m$都等于0。实际项目中$x$是非常高维的稀疏向量,求导时只关注那些非0项即可。
你一定有个疑问:$v$是模型参数,为了求$v$我们$\cdot$采用梯度下降法时需要计算损失函数对$v$的导数,为什么这里要计算$\hat{y}$对$v$的导数?看看分割线下方的内容你就明白了。
在实际预测点击率的项目中我们是不会直接使用公式(2)的,通常会再套一层sigmoid函数。公式(2)中的y^我们用z来取代。
$z=\phi(v,x)=\sum_{i=1}^n{\sum_{j=i+1}^n{v_{i,fj}\cdot v_{j,fi}x_ix_j}}$
由公式(3)得
$\frac{\partial{z}}{\partial{v_{i,fj}}}=v_{j,fi}x_ix_j$
用$a$表示对点击率的预测值
$a=\sigma(z)=\frac{1}{1+e^{-z}}=\frac{1}{1+e^{-\phi(v,x)}}$
令$y=0$表示负样本,$y=1$表示正样本,$C$表示交叉熵损失函数。根据《神经网络调优》中的公式(1)(2)可得
$\frac{\partial C}{\partial z}=a-y=\left\{\begin{matrix}-\frac{1}{1+e^z} & if\ y是正样本 \\ \frac{1}{1+e^{-z}} & if\ y是负样本\end{matrix}\right .$
$\frac{\partial C}{\partial{v_{i,fj}}}=\frac{\partial C}{\partial z}\frac{\partial{z}}{\partial{v_{i,fj}}}$
看完了本博客再去看论文《Field-aware Factorization Machines for CTR Prediction》中的公式推导应该就比较容易了吧,在该论文中他是以$y=1$代表正样本,$y=−1$代表负样本,所以才有了3.1节中的
$\kappa=\frac{\partial C}{\partial z}=\frac{-y}{1+e^{yz}}$
FFM原理及公式推导的更多相关文章
- XGBoost原理和公式推导
本篇文章主要介绍下Xgboost算法的原理和公式推导.关于XGB的一些应用场景在此就不赘述了,感兴趣的同学可以自行google.下面开始: 1.模型构建 构建最优模型的方法一般是最小化训练数据的损失 ...
- 深入FM和FFM原理与实践
FM和FFM模型是最近几年提出的模型,凭借其在数据量比较大并且特征稀疏的情况下,仍然能够得到优秀的性能和效果的特性,屡次在各大公司举办的CTR预估比赛中获得不错的战绩.美团点评技术团队在搭建DSP的过 ...
- 深入理解FFM原理与实践
原文:http://tech.meituan.com/deep-understanding-of-ffm-principles-and-practices.html 深入理解FFM原理与实践 del2 ...
- FM/FFM原理
转自https://tech.meituan.com/deep-understanding-of-ffm-principles-and-practices.html 深入FFM原理与实践 del2z, ...
- NDT(Normal Distributions Transform)算法原理与公式推导
正态分布变换(NDT)算法是一个配准算法,它应用于三维点的统计模型,使用标准最优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快.下面的公式推导 ...
- 线性模型之逻辑回归(LR)(原理、公式推导、模型对比、常见面试点)
参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读,方可全面了解LR): (1).https://zhuanlan.zhihu.com/p/74874291 (2).逻辑回归与交叉熵 (3) ...
- GAN 原理及公式推导
Generative Adversarial Network,就是大家耳熟能详的 GAN,由 Ian Goodfellow 首先提出,在这两年更是深度学习中最热门的东西,仿佛什么东西都能由 GAN 做 ...
- 机器学习 | 详解GBDT在分类场景中的应用原理与公式推导
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第31篇文章,我们一起继续来聊聊GBDT模型. 在上一篇文章当中,我们学习了GBDT这个模型在回归问题当中的原理.GBD ...
- 深度学习中常见的 Normlization 及权重初始化相关知识(原理及公式推导)
Batch Normlization(BN) 为什么要进行 BN 防止深度神经网络,每一层得参数更新会导致上层的输入数据发生变化,通过层层叠加,高层的输入分布变化会十分剧烈,这就使得高层需要不断去重新 ...
随机推荐
- ubuntu 14.4 apache2 django
记录下自己的配置过程以及遇见的问题. 系统: Ubuntu 14.04 64 系统内置Python版本:2.7.6 先声明,我一下操作都以root身份. 若登录是非root身份,请在命令前加sudo. ...
- HDU 5550 - Game Rooms(DP + 前缀和预处理)
链接: http://acm.hdu.edu.cn/showproblem.php?pid=5550 题意: 一个大楼有n(2≤n≤4000)层,每层可以建一个乒乓球房或者一个游泳房,且每种房间在大楼 ...
- oracle 禁用/启动job
注意:dbms_job只能在job的所在用户使用,如果broken其它用户的job用dbms_ijob dbms_job只能在当期用户内创建job.修改和删除job,不能对其他用户的job进行操作;s ...
- 如何查看MySQL执行的每条SQL
1.登录数据库 [root@mysqltest1 ~]# mysql -uroot -p -h172.16.*.*(你数据库的IP) 2.查看是否开启general_log mysql> sho ...
- Sequelize-nodejs-5-Querying
Querying查询 Attributes To select only some attributes, you can use the attributes option. Most often, ...
- 初识Qt文字绘制
1.新建一个Qt Gui应用,项目名称为myDraw,基类选择为QMainWindow,类名设置为MainWindow. 2.在mainwindow.h头文件中添加void paintEvent(QP ...
- CAN--UART的协议转换器
CAN--UART的协议转换器 //------------------------------------------------------// CAN <==> UART的协议转换 ...
- HashTable、HashSet和Dictionary的区别(转载)
1.HashTable哈希表(HashTable)表示键/值对的集合.在.NET Framework中,Hashtable是System.Collections命名空间提供的一个容器,用于处理和表现类 ...
- 更新Android Studio 3.1.1碰到的问题
碰到了如下问题 The SourceSet 'instrumentTest' is not recognized by the Android Gradle Plugin. Perhaps you m ...
- CTF-i春秋网鼎杯第一场misc部分writeup
CTF-i春秋网鼎杯第一场misc部分writeup 最近因为工作原因报名了网鼎杯,被虐了几天后方知自己还是太年轻!分享一下自己的解题经验吧 minified 题目: 一张花屏,png的图片,老方法, ...