FFM原理及公式推导
原文来自:博客园(华夏35度)http://www.cnblogs.com/zhangchaoyang 作者:Orisun
上一篇讲了FM(Factorization Machines),说一说FFM(Field-aware Factorization Machines )。
回顾一下FM:
$\begin{equation}\hat{y}=w_0+\sum_{i=1}^n{w_ix_i}+\sum_{i=1}^n{\sum_{j=i+1}^n{v_i\cdot v_jx_ix_j}}\label{fm}\end{equation}$ (1)
$\cdot$表示向量的内积。样本$x$是$n$维向量,$x_i$是第$i$个维度上的值。$v_i$是$x_i$对应的长度为$K$的隐向量,$V$是模型参数,所以所有样本都使用同一个$V$,即$x_{1,1}$与$x_{2,1}$都使用$v_1$。
在FFM(Field-aware Factorization Machines )中每一维特征(feature)都归属于一个特定的field,field和feature是一对多的关系。比如
| field | field1年龄 | field2城市 | field3性别 | |||
| feature | x1年龄 | x2北京 | x3上海 | x4深圳 | x5男 | x6女 |
| 用户1 | 23 | 1 | 0 | 0 | 1 | 0 |
| 用户2 | 31 | 0 | 0 | 1 | 0 | 1 |
1. 对于连续特征,一个特征就对应一个Field。或者对连续特征离散化,一个分箱成为一个特征。比如
| field | field1年龄 | |||
| feature | 小于20 | 20-30 | 30-40 | 大于40 |
| 用户1 | 0 | 23 | 0 | 0 |
| 用户2 | 0 | 0 | 31 | 0 |
2. 对于离散特征,采用one-hot编码,同一种属性的归到一个Field
不论是连续特征还是离散特征,它们都有一个共同点:同一个field下只有一个feature的值不是0,其他feature的值都是0。
FFM模型认为$v_i$不仅跟$x_i$有关系,还跟与$x_i$相乘的$x_j$所属的Field有关系,即$v_i$成了一个二维向量$v_{F\times K}$,$F$是Field的总个数。FFM只保留了(1)中的二次项.
$\begin{equation}\hat{y}=\sum_{i=1}^n{\sum_{j=i+1}^n{v_{i,fj}\cdot v_{j,fi}x_ix_j}}\label{ffm}\end{equation}$(2)
以上文的表格数据为例,计算用户1的$\hat{y}$
$\hat{y}=v_{1,f2}\cdot v_{2,f1}x_1x_2+v_{1,f3}\cdot v_{3,f1}x_1x_3+v_{1,f4}\cdot v_{4,f1}x_1x_4+\cdots$
由于$x_2,x_3,x_4$属于同一个Field,所以$f2,f3,f4$可以用同一个变量来代替,比如就用$f2$。
$\hat{y}=v_{1,f2}\cdot v_{2,f1}x_1x_2+v_{1,f2}\cdot v_{3,f1}x_1x_3+v_{1,f2}\cdot v_{4,f1}x_1x_4+\cdots$
我们来算一下$\hat{y}$对$v_{1,f2}$的偏导。
$\hat{y}=v_{1,f2}\cdot v_{2,f1}x_1x_2+v_{1,f2}\cdot v_{3,f1}x_1x_3+v_{1,f2}\cdot v_{4,f1}x_1x_4+\cdots$
等式两边都是长度为$K$的向量。
注意$x_2,x_3,x_4$是同一个属性的one-hot表示,即$x_2,x_3,x_4$中只有一个为1,其他都为0。在本例中$x_3=x_4=0, x_2=1$,所以
$\frac{\partial{\hat{y}}}{\partial{v_{1,f2}}}=v_{2,f1}x_1x_2$
推广到一般情况:
$\begin{equation}\frac{\partial{\hat{y}}}{\partial{v_{i,fj}}}=v_{j,fi}x_ix_j\label{par}\end{equation}$(3)
$x_j$属于Field$fj$,且同一个Field里面的其他$x_m$都等于0。实际项目中$x$是非常高维的稀疏向量,求导时只关注那些非0项即可。
你一定有个疑问:$v$是模型参数,为了求$v$我们$\cdot$采用梯度下降法时需要计算损失函数对$v$的导数,为什么这里要计算$\hat{y}$对$v$的导数?看看分割线下方的内容你就明白了。
在实际预测点击率的项目中我们是不会直接使用公式(2)的,通常会再套一层sigmoid函数。公式(2)中的y^我们用z来取代。
$z=\phi(v,x)=\sum_{i=1}^n{\sum_{j=i+1}^n{v_{i,fj}\cdot v_{j,fi}x_ix_j}}$
由公式(3)得
$\frac{\partial{z}}{\partial{v_{i,fj}}}=v_{j,fi}x_ix_j$
用$a$表示对点击率的预测值
$a=\sigma(z)=\frac{1}{1+e^{-z}}=\frac{1}{1+e^{-\phi(v,x)}}$
令$y=0$表示负样本,$y=1$表示正样本,$C$表示交叉熵损失函数。根据《神经网络调优》中的公式(1)(2)可得
$\frac{\partial C}{\partial z}=a-y=\left\{\begin{matrix}-\frac{1}{1+e^z} & if\ y是正样本 \\ \frac{1}{1+e^{-z}} & if\ y是负样本\end{matrix}\right .$
$\frac{\partial C}{\partial{v_{i,fj}}}=\frac{\partial C}{\partial z}\frac{\partial{z}}{\partial{v_{i,fj}}}$
看完了本博客再去看论文《Field-aware Factorization Machines for CTR Prediction》中的公式推导应该就比较容易了吧,在该论文中他是以$y=1$代表正样本,$y=−1$代表负样本,所以才有了3.1节中的
$\kappa=\frac{\partial C}{\partial z}=\frac{-y}{1+e^{yz}}$
FFM原理及公式推导的更多相关文章
- XGBoost原理和公式推导
本篇文章主要介绍下Xgboost算法的原理和公式推导.关于XGB的一些应用场景在此就不赘述了,感兴趣的同学可以自行google.下面开始: 1.模型构建 构建最优模型的方法一般是最小化训练数据的损失 ...
- 深入FM和FFM原理与实践
FM和FFM模型是最近几年提出的模型,凭借其在数据量比较大并且特征稀疏的情况下,仍然能够得到优秀的性能和效果的特性,屡次在各大公司举办的CTR预估比赛中获得不错的战绩.美团点评技术团队在搭建DSP的过 ...
- 深入理解FFM原理与实践
原文:http://tech.meituan.com/deep-understanding-of-ffm-principles-and-practices.html 深入理解FFM原理与实践 del2 ...
- FM/FFM原理
转自https://tech.meituan.com/deep-understanding-of-ffm-principles-and-practices.html 深入FFM原理与实践 del2z, ...
- NDT(Normal Distributions Transform)算法原理与公式推导
正态分布变换(NDT)算法是一个配准算法,它应用于三维点的统计模型,使用标准最优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快.下面的公式推导 ...
- 线性模型之逻辑回归(LR)(原理、公式推导、模型对比、常见面试点)
参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读,方可全面了解LR): (1).https://zhuanlan.zhihu.com/p/74874291 (2).逻辑回归与交叉熵 (3) ...
- GAN 原理及公式推导
Generative Adversarial Network,就是大家耳熟能详的 GAN,由 Ian Goodfellow 首先提出,在这两年更是深度学习中最热门的东西,仿佛什么东西都能由 GAN 做 ...
- 机器学习 | 详解GBDT在分类场景中的应用原理与公式推导
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第31篇文章,我们一起继续来聊聊GBDT模型. 在上一篇文章当中,我们学习了GBDT这个模型在回归问题当中的原理.GBD ...
- 深度学习中常见的 Normlization 及权重初始化相关知识(原理及公式推导)
Batch Normlization(BN) 为什么要进行 BN 防止深度神经网络,每一层得参数更新会导致上层的输入数据发生变化,通过层层叠加,高层的输入分布变化会十分剧烈,这就使得高层需要不断去重新 ...
随机推荐
- 4521: [Cqoi2016]手机号码
4521: [Cqoi2016]手机号码 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 1030 Solved: 609 [Submit][Statu ...
- MySQL IFNULL基本用法
MySQL IFNULL函数是MySQL控制流函数之一,它接受两个参数,如果不是NULL,则返回第一个参数. 否则,IFNULL函数返回第二个参数. 两个参数可以是文字值或表达式. 以下说明了IFNU ...
- C# HttpWebRequest请求超时解决办法
request.GetResponse();超时问题的解决,和HttpWebRequest多线程性能问题,请求超时的错误, 解决办法 1.将http的request的keepAlive设置为false ...
- Windows启动控制台登录模式
效果如下: 实现代码: Set-ItemProperty -Path HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Authentication\Lo ...
- chrome://命令
一些常用的命令: chrome://version 显示当前版本 chrome://flags 实验项目,加“#项目名称”锚点可以直接定位到项目 chrome://settings 设置,下图是设置定 ...
- [转]打造自己的LINQ Provider(上):Expression Tree揭秘
概述 在.NET Framework 3.5中提供了LINQ 支持后,LINQ就以其强大而优雅的编程方式赢得了开发人员的喜爱,而各种LINQ Provider更是满天飞,如LINQ to NHiber ...
- HTML5 新增内容
1. 新增标签 音频 <audio> <source src=""/> </audio> 视频 <video> <source ...
- 大数据入门第五天——离线计算之hadoop(上)概述与集群安装
一.概述 根据之前的凡技术必登其官网的原则,我们当然先得找到它的官网:http://hadoop.apache.org/ 1.什么是hadoop 先看官网介绍: The Apache™ Hadoop® ...
- 20155306 白皎 《网络攻防》 Exp2 后门原理与实践
20155306 白皎 <网络攻防> Exp2 后门原理与实践 一.实践基础 后门程序又称特洛伊木马,其用途在于潜伏在电脑中,从事搜集信息或便于黑客进入的动作.后程序和电脑病毒最大的差别, ...
- JavaWeb总结(十二)
JSP指令 提供整个JSP页面的相关信息 用于JSP页面与容器之间的通信 <%@ directive attribute1="value1" attribute2=" ...