原文来自:博客园(华夏35度)http://www.cnblogs.com/zhangchaoyang 作者:Orisun

上一篇讲了FM(Factorization Machines),说一说FFM(Field-aware Factorization Machines )。

回顾一下FM:

$\begin{equation}\hat{y}=w_0+\sum_{i=1}^n{w_ix_i}+\sum_{i=1}^n{\sum_{j=i+1}^n{v_i\cdot v_jx_ix_j}}\label{fm}\end{equation}$ (1)
$\cdot$表示向量的内积。样本$x$是$n$维向量,$x_i$是第$i$个维度上的值。$v_i$是$x_i$对应的长度为$K$的隐向量,$V$是模型参数,所以所有样本都使用同一个$V$,即$x_{1,1}$与$x_{2,1}$都使用$v_1$。

在FFM(Field-aware Factorization Machines )中每一维特征(feature)都归属于一个特定的field,field和feature是一对多的关系。比如

field field1年龄 field2城市 field3性别
 feature x1年龄 x2北京 x3上海 x4深圳 x5男 x6女
用户1 23 1 0 0 1 0
用户2 31 0 0 1 0 1

1. 对于连续特征,一个特征就对应一个Field。或者对连续特征离散化,一个分箱成为一个特征。比如

field  field1年龄
 feature 小于20 20-30 30-40 大于40
用户1 0 23 0 0
用户2 0 0 31 0

2. 对于离散特征,采用one-hot编码,同一种属性的归到一个Field

不论是连续特征还是离散特征,它们都有一个共同点:同一个field下只有一个feature的值不是0,其他feature的值都是0。

FFM模型认为$v_i$不仅跟$x_i$有关系,还跟与$x_i$相乘的$x_j$所属的Field有关系,即$v_i$成了一个二维向量$v_{F\times K}$,$F$是Field的总个数。FFM只保留了(1)中的二次项.

$\begin{equation}\hat{y}=\sum_{i=1}^n{\sum_{j=i+1}^n{v_{i,fj}\cdot v_{j,fi}x_ix_j}}\label{ffm}\end{equation}$(2)

以上文的表格数据为例,计算用户1的$\hat{y}$

$\hat{y}=v_{1,f2}\cdot v_{2,f1}x_1x_2+v_{1,f3}\cdot v_{3,f1}x_1x_3+v_{1,f4}\cdot v_{4,f1}x_1x_4+\cdots$

由于$x_2,x_3,x_4$属于同一个Field,所以$f2,f3,f4$可以用同一个变量来代替,比如就用$f2$。

$\hat{y}=v_{1,f2}\cdot v_{2,f1}x_1x_2+v_{1,f2}\cdot v_{3,f1}x_1x_3+v_{1,f2}\cdot v_{4,f1}x_1x_4+\cdots$

我们来算一下$\hat{y}$对$v_{1,f2}$的偏导。

$\hat{y}=v_{1,f2}\cdot v_{2,f1}x_1x_2+v_{1,f2}\cdot v_{3,f1}x_1x_3+v_{1,f2}\cdot v_{4,f1}x_1x_4+\cdots$

等式两边都是长度为$K$的向量。

注意$x_2,x_3,x_4$是同一个属性的one-hot表示,即$x_2,x_3,x_4$中只有一个为1,其他都为0。在本例中$x_3=x_4=0, x_2=1$,所以

$\frac{\partial{\hat{y}}}{\partial{v_{1,f2}}}=v_{2,f1}x_1x_2$

推广到一般情况:

$\begin{equation}\frac{\partial{\hat{y}}}{\partial{v_{i,fj}}}=v_{j,fi}x_ix_j\label{par}\end{equation}$(3)

$x_j$属于Field$fj$,且同一个Field里面的其他$x_m$都等于0。实际项目中$x$是非常高维的稀疏向量,求导时只关注那些非0项即可。

你一定有个疑问:$v$是模型参数,为了求$v$我们$\cdot$采用梯度下降法时需要计算损失函数对$v$的导数,为什么这里要计算$\hat{y}$对$v$的导数?看看分割线下方的内容你就明白了。


在实际预测点击率的项目中我们是不会直接使用公式(2)的,通常会再套一层sigmoid函数。公式(2)中的y^我们用z来取代。

$z=\phi(v,x)=\sum_{i=1}^n{\sum_{j=i+1}^n{v_{i,fj}\cdot v_{j,fi}x_ix_j}}$

由公式(3)得

$\frac{\partial{z}}{\partial{v_{i,fj}}}=v_{j,fi}x_ix_j$

用$a$表示对点击率的预测值

$a=\sigma(z)=\frac{1}{1+e^{-z}}=\frac{1}{1+e^{-\phi(v,x)}}$

令$y=0$表示负样本,$y=1$表示正样本,$C$表示交叉熵损失函数。根据《神经网络调优》中的公式(1)(2)可得

$\frac{\partial C}{\partial z}=a-y=\left\{\begin{matrix}-\frac{1}{1+e^z} & if\ y是正样本 \\ \frac{1}{1+e^{-z}} & if\ y是负样本\end{matrix}\right .$

$\frac{\partial C}{\partial{v_{i,fj}}}=\frac{\partial C}{\partial z}\frac{\partial{z}}{\partial{v_{i,fj}}}$

看完了本博客再去看论文《Field-aware Factorization Machines for CTR Prediction》中的公式推导应该就比较容易了吧,在该论文中他是以$y=1$代表正样本,$y=−1$代表负样本,所以才有了3.1节中的

$\kappa=\frac{\partial C}{\partial z}=\frac{-y}{1+e^{yz}}$

FFM原理及公式推导的更多相关文章

  1. XGBoost原理和公式推导

     本篇文章主要介绍下Xgboost算法的原理和公式推导.关于XGB的一些应用场景在此就不赘述了,感兴趣的同学可以自行google.下面开始: 1.模型构建 构建最优模型的方法一般是最小化训练数据的损失 ...

  2. 深入FM和FFM原理与实践

    FM和FFM模型是最近几年提出的模型,凭借其在数据量比较大并且特征稀疏的情况下,仍然能够得到优秀的性能和效果的特性,屡次在各大公司举办的CTR预估比赛中获得不错的战绩.美团点评技术团队在搭建DSP的过 ...

  3. 深入理解FFM原理与实践

    原文:http://tech.meituan.com/deep-understanding-of-ffm-principles-and-practices.html 深入理解FFM原理与实践 del2 ...

  4. FM/FFM原理

    转自https://tech.meituan.com/deep-understanding-of-ffm-principles-and-practices.html 深入FFM原理与实践 del2z, ...

  5. NDT(Normal Distributions Transform)算法原理与公式推导

    正态分布变换(NDT)算法是一个配准算法,它应用于三维点的统计模型,使用标准最优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快.下面的公式推导 ...

  6. 线性模型之逻辑回归(LR)(原理、公式推导、模型对比、常见面试点)

    参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读,方可全面了解LR): (1).https://zhuanlan.zhihu.com/p/74874291 (2).逻辑回归与交叉熵 (3) ...

  7. GAN 原理及公式推导

    Generative Adversarial Network,就是大家耳熟能详的 GAN,由 Ian Goodfellow 首先提出,在这两年更是深度学习中最热门的东西,仿佛什么东西都能由 GAN 做 ...

  8. 机器学习 | 详解GBDT在分类场景中的应用原理与公式推导

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第31篇文章,我们一起继续来聊聊GBDT模型. 在上一篇文章当中,我们学习了GBDT这个模型在回归问题当中的原理.GBD ...

  9. 深度学习中常见的 Normlization 及权重初始化相关知识(原理及公式推导)

    Batch Normlization(BN) 为什么要进行 BN 防止深度神经网络,每一层得参数更新会导致上层的输入数据发生变化,通过层层叠加,高层的输入分布变化会十分剧烈,这就使得高层需要不断去重新 ...

随机推荐

  1. echarts问题

    1.鼠标经过折线图  显示的框中的文字设置,需要设置tooltip下的formatter属性 formatter属性值可以为字符串也可function formatter:function(data) ...

  2. virtualbox+vagrant学习-4-Vagrantfile-4-Tips & Tricks

    Tips & Tricks Vagrantfile是一种非常灵活的配置格式.因为它只是Ruby,所以你可以用它做很多事情.然而,同样的道理,因为它是Ruby,所以有很多方法可以朝自己的脚开枪( ...

  3. c++——const关键字

    1 const基础知识(用法.含义.好处) int main() { const int a; int const b; const int *c; int * const d; const int ...

  4. oracle 基本知识点

    //创建临时表空间create temporary tablespace test_temp tempfile 'E:\oracle\product\10.2.0\oradata\testserver ...

  5. Linux磁盘分区和挂载

    Linux磁盘分区和挂载 分区 分区的方式: mbr分区 最多支持4个主分区 系统只能安装到主分区上 扩展分区要占用一个主分区 MBR最大支持2TB,但拥有最好的兼容性 gtp分区 支持无线多个主分区 ...

  6. sqoop工具介绍(hdfs与关系型数据库进行数据导入导出)

    数据表 第一类:数据库中的数据导入到HDFS上 #数据库驱动jar包用mysql-connector-java--bin,否则有可能报错! ./sqoop import --connect jdbc: ...

  7. Maven/Ant的安装(Win10 x64)

    一.Maven安装 1.官网下载安装包,http://maven.apache.org/download.cgi. 2.安装包解压到某一目录,然后配置maven的环境变量. PS:也可以不配置环境变量 ...

  8. K2 BPM介绍(1)

    K2 BPM介绍(1) 官网访问地址: 中文官网 英文官网 它是一个强大的BPM产品 K2 BPM详解 产品特性 与任何内容集成 Integrate with Anything 功能丰富的窗体 Fea ...

  9. iOS蓝牙APP常驻后台

    iOS蓝牙类APP常驻后台的实现方法,经过在苹果开发者论坛询问,以及查看苹果开发者文档,最后得出正确的方法为: 1.设置plist,蓝牙权限 2.到target-capabilities-backgr ...

  10. react使用阿里字体图标

    1. 在react项目的public文件夹下面创建iconfont文件夹,将下载的文件放到iconfont文件夹下 2.在public文件夹下的index.html引入iconfont.css,如 & ...