Netty源码分析第3章(客户端接入流程)---->第2节: 处理接入事件之handle的创建
Netty源码分析第三章: 客户端接入流程
第二节: 处理接入事件之handle的创建
上一小节我们剖析完成了与channel绑定的ChannelConfig初始化相关的流程, 这一小节继续剖析客户端连接事件的处理
回到上一章NioEventLoop的processSelectedKey ()方法:
private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
//获取到channel中的unsafe
final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
//如果这个key不是合法的, 说明这个channel可能有问题
if (!k.isValid()) {
//代码省略
}
try {
//如果是合法的, 拿到key的io事件
int readyOps = k.readyOps();
//链接事件
if ((readyOps & SelectionKey.OP_CONNECT) != 0) {
int ops = k.interestOps();
ops &= ~SelectionKey.OP_CONNECT;
k.interestOps(ops);
unsafe.finishConnect();
}
//写事件
if ((readyOps & SelectionKey.OP_WRITE) != 0) {
ch.unsafe().forceFlush();
}
//读事件和接受链接事件
//如果当前NioEventLoop是work线程的话, 这里就是op_read事件
//如果是当前NioEventLoop是boss线程的话, 这里就是op_accept事件
if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
unsafe.read();
if (!ch.isOpen()) {
return;
}
}
} catch (CancelledKeyException ignored) {
unsafe.close(unsafe.voidPromise());
}
}
我们看其中的if判断:
if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0)
上一小节我们分析过, 如果当前NioEventLoop是work线程的话, 这里就是op_read事件, 如果是当前NioEventLoop是boss线程的话, 这里就是op_accept事件, 这里我们以boss线程为例进行分析
之前我们讲过, 无论处理op_read事件还是op_accept事件, 都走的unsafe的read()方法, 这里unsafe是通过channel拿到, 我们知道如果是处理accept事件, 这里的channel是NioServerSocketChannel, 这里与之绑定的unsafe是NioMessageUnsafe
我们跟到NioMessageUnsafe的read()方法:
public void read() {
//必须是NioEventLoop方法调用的, 不能通过外部线程调用
assert eventLoop().inEventLoop();
//服务端channel的config
final ChannelConfig config = config();
//服务端channel的pipeline
final ChannelPipeline pipeline = pipeline();
//处理服务端接入的速率
final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
//设置配置
allocHandle.reset(config);
boolean closed = false;
Throwable exception = null;
try {
try {
do {
//创建jdk底层的channel
//readBuf用于临时承载读到链接
int localRead = doReadMessages(readBuf);
if (localRead == 0) {
break;
}
if (localRead < 0) {
closed = true;
break;
}
//分配器将读到的链接进行计数
allocHandle.incMessagesRead(localRead);
//连接数是否超过最大值
} while (allocHandle.continueReading());
} catch (Throwable t) {
exception = t;
}
int size = readBuf.size();
//遍历每一条客户端连接
for (int i = 0; i < size; i ++) {
readPending = false;
//传递事件, 将创建NioSokectChannel进行传递
//最终会调用ServerBootstrap的内部类ServerBootstrapAcceptor的channelRead()方法
pipeline.fireChannelRead(readBuf.get(i));
}
readBuf.clear();
allocHandle.readComplete();
pipeline.fireChannelReadComplete();
//代码省略
} finally {
//代码省略
}
}
首先获取与NioServerSocketChannel绑定config和pipeline, config我们上一小节进行分析过, pipeline我们将在下一章进行剖析
我们看这一句:
final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
这里通过RecvByteBufAllocator接口调用了其内部接口Handler
我们看其RecvByteBufAllocator接口:
public interface RecvByteBufAllocator {
Handle newHandle();
interface Handle {
int guess();
void reset(ChannelConfig config);
void incMessagesRead(int numMessages);
void lastBytesRead(int bytes);
int lastBytesRead();
void attemptedBytesRead(int bytes);
int attemptedBytesRead();
boolean continueReading();
void readComplete();
}
}
我们看到RecvByteBufAllocator接口只有一个方法newHandle(), 顾名思义就是用于创建Handle对象的方法, 而Handle中的方法, 才是实际用于操作的方法
在RecvByteBufAllocator实现类中包含Handle的子类, 具体实现关系如下:

3-2-1
回到read()方法中再看这段代码:
final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
unsafe()返回当前channel绑定的unsafe对象, recvBufAllocHandle()最终会调用AbstractChannel内部类AbstractUnsafe的recvBufAllocHandle()方法
跟进AbstractUnsafe的recvBufAllocHandle()方法:
public RecvByteBufAllocator.Handle recvBufAllocHandle() {
//如果不存在, 则创建一个recvHandle的实例
if (recvHandle == null) {
recvHandle = config().getRecvByteBufAllocator().newHandle();
}
return recvHandle;
}
如果如果是第一次执行到这里, 自身属性recvHandle为空, 会创建一个recvHandle实例, config()返回NioServerSocketChannel绑定的ChannelConfig, getRecvByteBufAllocator()获取其RecvByteBufAllocator对象, 这两部分上一小节剖析过了, 这里通过newHandle()创建一个Handle, 这里会走到AdaptiveRecvByteBufAllocator类中的newHandle()方法中
跟进newHandle()方法中:
public Handle newHandle() {
return new HandleImpl(minIndex, maxIndex, initial);
}
这里创建HandleImpl传入了三个参数, 这三个参数我们上一小节剖析过, minIndex为最小内存在SIZE_TABLE中的下标, maxIndex为最大内存在SEIZE_TABEL中的下标, initial是初始内存, 我们跟到HandleImpl的构造方法中:
public HandleImpl(int minIndex, int maxIndex, int initial) {
this.minIndex = minIndex;
this.maxIndex = maxIndex;
index = getSizeTableIndex(initial);
nextReceiveBufferSize = SIZE_TABLE[index];
}
初始化minIndex和maxIndex, 根据initial找到当前的下标, nextReceiveBufferSize是根据当前的下标找到对应的内存
这样, 我们就创建了个Handle对象
在这里我们需要知道, 这个handle, 是和channel唯一绑定的属性, 而AdaptiveRecvByteBufAllocator对象是和ChannelConfig对象唯一绑定的, 间接也是和channel进行唯一绑定
继续回到read()方法:
public void read() {
//必须是NioEventLoop方法调用的, 不能通过外部线程调用
assert eventLoop().inEventLoop();
//服务端channel的config
final ChannelConfig config = config();
//服务端channel的pipeline
final ChannelPipeline pipeline = pipeline();
//处理服务端接入的速率
final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
//设置配置
allocHandle.reset(config);
boolean closed = false;
Throwable exception = null;
try {
try {
do {
//创建jdk底层的channel
//readBuf用于临时承载读到链接
int localRead = doReadMessages(readBuf);
if (localRead == 0) {
break;
}
if (localRead < 0) {
closed = true;
break;
}
//分配器将读到的链接进行计数
allocHandle.incMessagesRead(localRead);
//连接数是否超过最大值
} while (allocHandle.continueReading());
} catch (Throwable t) {
exception = t;
}
int size = readBuf.size();
//遍历每一条客户端连接
for (int i = 0; i < size; i ++) {
readPending = false;
//传递事件, 将创建NioSokectChannel进行传递
//最终会调用ServerBootstrap的内部类ServerBootstrapAcceptor的channelRead()方法
pipeline.fireChannelRead(readBuf.get(i));
}
readBuf.clear();
allocHandle.readComplete();
pipeline.fireChannelReadComplete();
//代码省略
} finally {
//代码省略
}
}
继续往下跟:
allocHandle.reset(config);
这个段代码是重新设置配置, 也就是将之前的配置信息进行初始化, 最终会走到, DefaultMaxMessagesRecvByteBufAllocator中的内部类MaxMessageHandle的reet中
我们跟进reset中:
public void reset(ChannelConfig config) {
this.config = config;
maxMessagePerRead = maxMessagesPerRead();
totalMessages = totalBytesRead = 0;
}
这里仅仅对几个属性做了赋值, 简单介绍下这几个属性:
config:当前channelConfig对象
maxMessagePerRead:表示读取消息的时候可以读取几次(循环次数), maxMessagesPerRead()返回的是RecvByteBufAllocator的maxMessagesPerRead属性, 上一小节已经做过剖析
totalMessages:代表目前读循环已经读取的消息个数, 在NIO传输模式下也就是已经执行的循环次数, 这里初始化为0
totalBytesRead:代表目前已经读取到的消息字节总数, 这里同样也初始化为0
我们继续往下走, 这里首先是一个do-while循环, 循环体里通过int localRead = doReadMessages(readBuf)这种方式将读取到的连接数放入到一个List集合中, 这一步我们下一小节再分析, 我们继续往下走:
我们首先看allocHandle.incMessagesRead(localRead)这一步, 这里的localRead表示这次循环往readBuf中放入的连接数, 在Nio模式下这, 如果读取到一条连接会返回1
跟到中的MaxMessageHandle的incMessagesRead(int amt)方法中:
public final void incMessagesRead(int amt) {
totalMessages += amt;
}
这里将totalMessages增加amt, 也就是+1
这里totalMessage, 刚才已经剖析过, 在NIO传输模式下也就是已经执行的循环次数, 这里每次执行一次循环都会加一
再去看循环终止条件allocHandle.continueReading()
跟到MaxMessageHandle的continueReading()方法中:
public boolean continueReading() {
//config.isAutoRead()默认返回true
// totalMessages < maxMessagePerRead
//totalMessages代表当前读到的链接, 默认是1
//maxMessagePerRead每一次最大读多少链接(默认16)
return config.isAutoRead() &&
attemptedBytesRead == lastBytesRead &&
totalMessages < maxMessagePerRead &&
totalBytesRead < Integer.MAX_VALUE;
}
我们逐个分析判断条件:
config.isAutoRead(): 这里默认为true
attemptedBytesRead == lastBytesRead: 表示本次读取的字节数和最后一次读取的字节数相等, 因为到这里都没有进行字节数组的读取操作, 所以默认都为0, 这里也返回true
totalMessages < maxMessagePerRead: 表示当前读取的次数是否小于最大读取次数, 我们知道totalMessages每次循环都会自增, 而maxMessagePerRead默认值为16, 所以这里会限制循环不能超过16次, 也就是最多一次只能读取16条连接
totalBytesRead < Integer.MAX_VALUE: 表示读取的字节数不能超过int类型的最大值
这里就剖析完了Handle的创建和初始化过程, 并且剖析了循环终止条件等相关的逻辑
上一节: 初始化NioSocketChannelConfig
Netty源码分析第3章(客户端接入流程)---->第2节: 处理接入事件之handle的创建的更多相关文章
- Netty源码分析第3章(客户端接入流程)---->第1节: 初始化NioSockectChannelConfig
Netty源码分析第三章: 客户端接入流程 概述: 之前的章节学习了server启动以及eventLoop相关的逻辑, eventLoop轮询到客户端接入事件之后是如何处理的?这一章我们循序渐进, 带 ...
- Netty源码分析第3章(客户端接入流程)---->第3节: NioSocketChannel的创建
Netty源码分析第三章: 客户端接入流程 第三节: NioSocketChannel的创建 回到上一小节的read()方法: public void read() { //必须是NioEventLo ...
- Netty源码分析第3章(客户端接入流程)---->第4节: NioSocketChannel注册到selector
Netty源码分析第三章: 客户端接入流程 第四节: NioSocketChannel注册到selector 我们回到最初的NioMessageUnsafe的read()方法: public void ...
- Netty源码分析第3章(客户端接入流程)---->第5节: 监听读事件
Netty源码分析第三章: 客户端接入流程 第五节: 监听读事件 我们回到AbstractUnsafe的register0()方法: private void register0(ChannelPro ...
- Netty源码分析第4章(pipeline)---->第7节: 前章节内容回顾
Netty源码分析第四章: pipeline 第七节: 前章节内容回顾 我们在第一章和第三章中, 遗留了很多有关事件传输的相关逻辑, 这里带大家一一回顾 首先看两个问题: 1.在客户端接入的时候, N ...
- Netty源码分析第5章(ByteBuf)---->第10节: SocketChannel读取数据过程
Netty源码分析第五章: ByteBuf 第十节: SocketChannel读取数据过程 我们第三章分析过客户端接入的流程, 这一小节带大家剖析客户端发送数据, Server读取数据的流程: 首先 ...
- Netty源码分析第6章(解码器)---->第1节: ByteToMessageDecoder
Netty源码分析第六章: 解码器 概述: 在我们上一个章节遗留过一个问题, 就是如果Server在读取客户端的数据的时候, 如果一次读取不完整, 就触发channelRead事件, 那么Netty是 ...
- Netty源码分析第4章(pipeline)---->第1节: pipeline的创建
Netty源码分析第四章: pipeline 概述: pipeline, 顾名思义, 就是管道的意思, 在netty中, 事件在pipeline中传输, 用户可以中断事件, 添加自己的事件处理逻辑, ...
- Netty源码分析第4章(pipeline)---->第2节: handler的添加
Netty源码分析第四章: pipeline 第二节: Handler的添加 添加handler, 我们以用户代码为例进行剖析: .childHandler(new ChannelInitialize ...
随机推荐
- memcached迁移方案——记一次memcached session服务的迁移
背景: (1)由于机房调整,需要迁移memcached: (2)需要在短期内迁移完成(一周以内): (3)该memcached 保存了用户的登录数据,非常重要,一旦出问题将导致大量的用户被踢出: (4 ...
- Python学习之路 (四)爬虫(三)HTTP和HTTPS
HTTP和HTTPS HTTP协议(HyperText Transfer Protocol,超文本传输协议):是一种发布和接收 HTML页面的方法. HTTPS(Hypertext Transfer ...
- Python读文件报错:SyntaxError: Non-ASCII character in file
打开city.py文件时报错 问题原因: 程序中的编码错误,python默认是acii模式,没有支持utf8.如果代码中有汉字 ,就会报错 解决方案: 源代码文件(city.py)第一行添加:#cod ...
- springmvc项目打war包部署到tomcat访问路径去掉项目名
一般来说,部署到tomcat则是把war包丢到webapps目录下,启动Tomcat会自动解压,成一个war包名称的文件夹项目, 例如imgManager.war 访问的地址一般是localhost: ...
- 【绝密】为什么现在的CAN收发器通信距离越来越短?
[绝密]为什么现在的CAN收发器通信距离越来越短? CAN收发器的改良和隔离器件引入,大大提高了通信的可靠性,但同时也引入了额外的延时,导致通信距离变短,或总线错误帧增加,本文以1Mbps波特率下 ...
- 第一章 Linux内核简介
1. 操作系统和内核 操作系统是指在整个系统中负责完成最基本功能和系统管理的那些部分.包括内核.设备驱动程序.启动引导程序.命令行shell或者其他种类的用户界面.基本的文件管理工具和系统工具. 用户 ...
- mysql 跑存储过程没有权限的问题
1.赋予权限 GRANT ALL PRIVILEGES ON *.* TO root@"%" IDENTIFIED BY "root"; 2.刷新权限 FLUS ...
- 前端框架比较,Layui - iView - ElementUI
Layui 分为单页版和iframe版 单页版 通过将单页代码输出到div,不如要完整的html代码. 刷新页面后,依然能够记录上一次的页面. 此种方式不易于调试前端代码. Iframe版 通过ifr ...
- pci枚举初始化部分(1)
基于linux-4.20-rc3源码分析 1 .扫描所有PCI设备并检测,填充设备结构体 static struct pci_dev *pci_scan_device(struct pci_bus * ...
- C语言 有关内存的思考题
非原创. 今天笔试时候遇到的问题,原文链接见底部. 1 void GetMemory(char *p) { p = (); } void Test(void) { char *str=NULL; Ge ...