Description

  对于一个平面上点的集合P={(xi,yi )},定义集合P的面积F(P)为点集P的凸包的面积。
  对于两个点集A和B,定义集合的和为:
  A+B={(xiA+xjB,yiA+yjB ):(xiA,yiA )∈A,(xjB,yjB )∈B}
  现在给定一个N个点的集合A和一个M个点的集合B,求2F(A+B)。

Input

 第一行包含用空格隔开的两个整数,分别为N和M;
  第二行包含N个不同的数对,表示A集合中的N个点的坐标;
  第三行包含M个不同的数对,表示B集合中的M个点的坐标。

Output

 一共输出一行一个整数,2F(A+B)。

Sample Input

4 5
0 0 2 1 0 1 2 0
0 0 1 0 0 2 1 2 0 1

Sample Output

18
数据规模和约定
对于30%的数据满足N ≤ 200,M ≤ 200;
对于100%的数据满足N ≤ 10^5,M ≤ 10^5,|xi|, |yi| ≤ 10^8。

正解:$Minkowski$和。

$Minkowski$和,就是题面的这个东西。。

分别求出两个点集的凸包,然后贪心地加点就行。

首先,$A$凸包和$B$凸包的第一个点的和肯定会在最终的凸包里。

然后我们设$A$凸包到了$i$点,$B$凸包到了$j$点。

如果$a[i+1]+b[j]$比$a[i]+b[j+1]$更凸,那么就用$A$凸包更新,否则用$B$凸包更新。

最后求出的这个就是新凸包,直接用叉积算面积就行了。

 #include <bits/stdc++.h>
#define il inline
#define RG register
#define ll long long
#define N (500010) using namespace std; struct point{
ll x,y;
il point operator + (const point &a) const{
return (point){x+a.x,y+a.y};
}
il point operator - (const point &a) const{
return (point){x-a.x,y-a.y};
}
}p[N],t1[N],t2[N],st[N]; int n,m,top;
ll S; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il int cmp(const point &a,const point &b){
if (a.x==b.x) return a.y<b.y; return a.x<b.x;
} il ll cross(RG point a,RG point b){ return a.x*b.y-a.y*b.x; } il void graham(point *p,point *t,RG int n){
sort(p+,p+n+,cmp);
for (RG int i=;i<=n;++i){
while (top>= && cross(p[i]-t[top-],t[top]-t[top-])>=) --top;
t[++top]=p[i];
}
for (RG int i=n-,la=top;i>=;--i){
while (top>la && cross(p[i]-t[top-],t[top]-t[top-])>=) --top;
t[++top]=p[i];
}
--top; return;
} int main(){
#ifndef ONLINE_JUDGE
freopen("area.in","r",stdin);
freopen("area.out","w",stdout);
#endif
n=gi(),m=gi();
for (RG int i=;i<=n;++i) p[i].x=gi(),p[i].y=gi(); graham(p,t1,n),n=top,top=;
for (RG int i=;i<=m;++i) p[i].x=gi(),p[i].y=gi(); graham(p,t2,m),m=top,top=;
st[top=]=t1[]+t2[];
for (RG int i=,j=;i<=n || j<=m;){
RG point x=t1[(i-)%n+]+t2[j%m+],y=t1[i%n+]+t2[(j-)%m+];
if (cross(x-st[top],y-st[top])>=) st[++top]=x,++j; else st[++top]=y,++i;
}
for (RG int i=;i<top;++i) S+=cross(st[i]-st[],st[i+]-st[]); cout<<S; return ;
}

bzoj2564 集合的面积的更多相关文章

  1. bzoj2564集合的面积

    题目描述 对于一个平面上点的集合P={(xi,yi )},定义集合P的面积F(P)为点集P的凸包的面积. 对于两个点集A和B,定义集合的和为: A+B={(xiA+xjB,yiA+yjB ):(xiA ...

  2. bzoj2564: 集合的面积(闵可夫斯基和 凸包)

    题面 传送门 题解 花了一个下午的时间调出了一个稍微能看的板子--没办法网上的板子和咱的不太兼容-- 首先有一个叫做闵可夫斯基和的东西,就是给你两个点集\(A,B\),要你求一个点集\(C=\{x+y ...

  3. BZOJ2564: 集合的面积(闵可夫斯基和 凸包)

    题意 题目链接 Sol 这个东西的学名应该叫"闵可夫斯基和".就是合并两个凸包 首先我们先分别求出给出的两个多边形的凸包.合并的时候直接拿个双指针扫一下,每次选最凸的点就行了. 复 ...

  4. bzoj 2564 集合的面积

    Description 对于一个平面上点的集合P={(xi,yi )},定义集合P的面积F(P)为点集P的凸包的面积. 对于两个点集A和B,定义集合的和为: A+B={(xiA+xjB,yiA+yjB ...

  5. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  6. UVALive 4794 Sharing Chocolate

    Sharing Chocolate Chocolate in its many forms is enjoyed by millions of people around the world ever ...

  7. [opencv]二维码识别开发流程及问题复盘总结

    项目复盘总结 开发需求: 在桌面机器人(向下俯视)摄像头拍摄到的图像中做条形码识别与二维码识别. 条形码在图像固定位置,二维码做成卡片的形式在固定区域内随意摆放. 开发环境及相关库:ubuntu 18 ...

  8. 计算照片的面积(WPF篇)

    昨天,老周突发其想地给大伙伴们说了一下UWP应用中计算照片面积的玩法,而且老周也表示会提供WPF版本的示例.所以,今天就给大伙们补上吧. WPF是集成在.net框架中,属于.net的一部分,千万不要跟 ...

  9. 计算照片的面积(UWP篇)

    今天先说UWP应用程序上计算照片面积的方法,改天有空,再说说WPF篇. 其实计算照片面积的原理真TMD简单,只要你有本事读到照片的像素高度和宽度,以及水平/垂直方向上的分辨率(DPI)就可以了.计算方 ...

随机推荐

  1. Angular-学习。

     今天刚学了点关于Angular的知识,就迫不及待的想跟大家来分享. 1.angular.extend ( )方法可以把一个或多个对象中的方法和属性扩展到一个目的对象中. <script typ ...

  2. Oracle EBS 附件功能

    SELECT fde.table_name, fde.data_object_code, fdet.user_entity_name, fdet.user_entity_prompt, fat.app ...

  3. asp.net 一般处理程序接收上传文件的问题

    在使用Html+ashx处理文件上传时,遇到上传文件超过4M的问题,首先HTML代码如下: <!DOCTYPE html> <html> <head> <me ...

  4. PowerShell管理SCOM2007R2

    get-operationsmanagercommand #定义RMS服务器名称(SCOM管理控制台所在服务器名称)#Connect to the RMS server and initialize ...

  5. 工具-github在linux下面没有git push报错

    time: 2015/12/25 1. 描述: error: The requested URL returned error: 403 Forbidden while accessing https ...

  6. Redis学习---Redis操作之List

    List操作,redis中的List在在内存中按照一个name对应一个List来存储 lpush(name,values) --> 实际上是左添加 # 在name对应的list中添加元素,每个新 ...

  7. 数据库启动丢失MSVCP120.dll

    在自己第一次安装数据库的时候发生了很多问题,,首当其冲的就是数据库启动时丢失MSVCP120.dll,这里就不配图了(安装好了才想起来写一篇博客). 为什么安装不了? 这是因为系统缺失必要的运行库导致 ...

  8. Spring Boot Mybatis-Plus

    Mybatis-Plus 是对 Mybatis-Plus 的一些扩充. 在 Spring Boot 中进行集成的时候其实基本上和 mybatis 是一致的. 在你的配置文件中.配置 你的 entity ...

  9. [转] JavaScript生成GUID的算法

    原文地址: http://www.cnblogs.com/snandy/p/3261754.html 全局唯一标识符(GUID,Globally Unique Identifier)也称作 UUID( ...

  10. 团队作业—预则立&&他山之石(改)

    首先特别感谢刘乾学长腾出他宝贵的时间接受我的采访,为我们提出宝贵的建议,深表感谢. 1.他山之石,可以攻玉.借鉴前人的经验可以使我们减少很多走弯路的地方,这也是本次采访的目的,参考历届学长的经验,让我 ...