boost强分类器的实现
boost.cpp文件下:
bool CvCascadeBoost::train( const CvFeatureEvaluator* _featureEvaluator,
int _numSamples,
int _precalcValBufSize, int _precalcIdxBufSize,
const CvCascadeBoostParams& _params )
函数是boost方法的入口函数。
// 部分代码,设置参数
set_params( _params );
// 如果是logit或gentle的boost方式,需要从_featureEvaluator->cls 中拷贝样本的类别信息到 data->responses
// 因为这两种boost方法计算式把类别从0/1该为-1/+1使用
if ( (_params.boost_type == LOGIT) || (_params.boost_type == GENTLE) )
data->do_responses_copy();
// 设置所有样本初始权值为1/n
update_weights( 0 ); cout << "+----+---------+---------+" << endl;
cout << "| N | HR | FA |" << endl;
cout << "+----+---------+---------+" << endl; do
{
CvCascadeBoostTree* tree = new CvCascadeBoostTree;
// 训练一个弱分类器,弱分类器是棵CART树
if( !tree->train( data, subsample_mask, this ) )
{
delete tree;
break;
}
cvSeqPush( weak, &tree );
// 根据boost公式更新样本数据的权值
update_weights( tree );
// 根据用户输入参数,把一定比例的(0.05)权值最小的样本去掉
trim_weights();
// subsample_mask 保存每个样本是否参数训练的标记(值为0/1);没有可用样本了,退出训练
if( cvCountNonZero(subsample_mask) == 0 )
break;
}
// 如果当前强分类器达到了设置的虚警率要求或弱分类数目达到上限停止
while( !isErrDesired() && (weak->total < params.weak_count) );
后续的执行流程可以参见http://blog.csdn.net/beerbuddys/article/details/40712957
void CvDTree::try_split_node( CvDTreeNode* node )
{
CvDTreeSplit* best_split = 0;
int i, n = node->sample_count, vi;
bool can_split = true;
double quality_scale; calc_node_value( node ); if( node->sample_count <= data->params.min_sample_count ||
node->depth >= data->params.max_depth )
can_split = false; if( can_split && data->is_classifier )
{
// check if we have a "pure" node,
// we assume that cls_count is filled by calc_node_value()
int* cls_count = data->counts->data.i;
int nz = 0, m = data->get_num_classes();
for( i = 0; i < m; i++ )
nz += cls_count[i] != 0;
if( nz == 1 ) // there is only one class
can_split = false;
}
else if( can_split )
{
if( sqrt(node->node_risk)/n < data->params.regression_accuracy )
can_split = false;
} if( can_split )
{
best_split = find_best_split(node);
// TODO: check the split quality ...
node->split = best_split;
}
if( !can_split || !best_split )
{
data->free_node_data(node);
return;
} quality_scale = calc_node_dir( node );
if( data->params.use_surrogates )
{
// find all the surrogate splits
// and sort them by their similarity to the primary one
for( vi = 0; vi < data->var_count; vi++ )
{
CvDTreeSplit* split;
int ci = data->get_var_type(vi); if( vi == best_split->var_idx )
continue; if( ci >= 0 )
split = find_surrogate_split_cat( node, vi );
else
split = find_surrogate_split_ord( node, vi ); if( split )
{
// insert the split
CvDTreeSplit* prev_split = node->split;
split->quality = (float)(split->quality*quality_scale); while( prev_split->next &&
prev_split->next->quality > split->quality )
prev_split = prev_split->next;
split->next = prev_split->next;
prev_split->next = split;
}
}
}
split_node_data( node );
// 为结点的左右计算输出值
try_split_node( node->left );
try_split_node( node->right );
}
其中calc_node_value计算结点的value,对应代码是
void
CvBoostTree::calc_node_value( CvDTreeNode* node )
然后执行到tree.cpp中的:
CvDTreeSplit* CvDTree::find_best_split( CvDTreeNode* node )
{
DTreeBestSplitFinder finder( this, node );
// 在开启TBB情况下,多核并行处理
cv::parallel_reduce(cv::BlockedRange(0, data->var_count), finder); CvDTreeSplit *bestSplit = 0;
if( finder.bestSplit->quality > 0 )
{
bestSplit = data->new_split_cat( 0, -1.0f );
memcpy( bestSplit, finder.bestSplit, finder.splitSize );
} return bestSplit;
}
进一步看operator()函数
//tree->find_split_ord_reg函数对特征vi找到最优的阈值。
void DTreeBestSplitFinder::operator()(const BlockedRange& range)
{
int vi, vi1 = range.begin(), vi2 = range.end();
int n = node->sample_count;
CvDTreeTrainData* data = tree->get_data();
AutoBuffer<uchar> inn_buf(2*n*(sizeof(int) + sizeof(float))); for( vi = vi1; vi < vi2; vi++ )
{
CvDTreeSplit *res;
int ci = data->get_var_type(vi);
if( node->get_num_valid(vi) <= 1 )
continue; if( data->is_classifier )
{
if( ci >= 0 )
res = tree->find_split_cat_class( node, vi, bestSplit->quality, split, (uchar*)inn_buf );
else
res = tree->find_split_ord_class( node, vi, bestSplit->quality, split, (uchar*)inn_buf );
}
else
{
if( ci >= 0 )
res = tree->find_split_cat_reg( node, vi, bestSplit->quality, split, (uchar*)inn_buf );
else // 找到特征vi对应的最优分割,也就是求取最优阈值
res = tree->find_split_ord_reg( node, vi, bestSplit->quality, split, (uchar*)inn_buf );
}
// 更新bestSplit为quality最高的分割
if( res && bestSplit->quality < split->quality )
memcpy( bestSplit.get(), split.get(), splitSize );
}
}
find_split_ord_reg要做的事情就是寻找最优分割,找到一个阈值将数据分为两部分,并保证两边的总体误差最小。
策略是:将特征值排序,然后依次测试最优阈值为values[i]和values[i+1]的中值。
CvDTreeSplit*
CvBoostTree::find_split_ord_reg( CvDTreeNode* node, int vi, float init_quality, CvDTreeSplit* _split, uchar* _ext_buf )
{
const float epsilon = FLT_EPSILON*2;
const double* weights = ensemble->get_subtree_weights()->data.db;
int n = node->sample_count;
int n1 = node->get_num_valid(vi); cv::AutoBuffer<uchar> inn_buf;
if( !_ext_buf )
inn_buf.allocate(2*n*(sizeof(int)+sizeof(float)));
uchar* ext_buf = _ext_buf ? _ext_buf : (uchar*)inn_buf; float* values_buf = (float*)ext_buf;
int* indices_buf = (int*)(values_buf + n);
int* sample_indices_buf = indices_buf + n;
const float* values = 0;
const int* indices = 0;
// 计算所有样本的第vi个haar特征值,values为特征值数组,已经从小到大排序
data->get_ord_var_data( node, vi, values_buf, indices_buf, &values, &indices, sample_indices_buf );
float* responses_buf = (float*)(indices_buf + n);
const float* responses = data->get_ord_responses( node, responses_buf, sample_indices_buf ); int i, best_i = -1;
double L = 0, R = weights[n];
double best_val = init_quality, lsum = 0, rsum = node->value*R; // compensate for missing values
for( i = n1; i < n; i++ )
{
int idx = indices[i];
double w = weights[idx];
rsum -= responses[idx]*w;
R -= w;
} // find the optimal split
for( i = 0; i < n1 - 1; i++ )
{
int idx = indices[i];
double w = weights[idx];
double t = responses[idx]*w;
L += w; R -= w;
lsum += t; rsum -= t; if( values[i] + epsilon < values[i+1] )
{
double val = (lsum*lsum*R + rsum*rsum*L)/(L*R);
if( best_val < val )
{
best_val = val;
best_i = i;
}
}
} CvDTreeSplit* split = 0;
if( best_i >= 0 )
{
split = _split ? _split : data->new_split_ord( 0, 0.0f, 0, 0, 0.0f );
split->var_idx = vi;
split->ord.c = (values[best_i] + values[best_i+1])*0.5f;
split->ord.split_point = best_i;
split->inversed = 0;
split->quality = (float)best_val;
}
return split;
}
类似与左右的熵越低越好。特征的计算见函数:
void CvCascadeBoostTrainData::get_ord_var_data( CvDTreeNode* n, int vi, float* ordValuesBuf, int* sortedIndicesBuf,
const float** ordValues, const int** sortedIndices, int* sampleIndicesBuf )
boost强分类器的实现的更多相关文章
- 【AdaBoost算法】强分类器训练过程
一.强分类器训练过程 算法原理如下(参考自VIOLA P, JONES M. Robust real time object detection[A] . 8th IEEE International ...
- MATLAB神经网络(5) 基于BP_Adaboost的强分类器设计——公司财务预警建模
5.1 案例背景 5.1.1 BP_Adaboost模型 Adaboost算法的思想是合并多个“弱”分类器的输出以产生有效分类.其主要步骤为:首先给出弱学习算法和样本空间($X$,$Y$),从样本空间 ...
- 使用 AdaBoost 元算法提高分类器性能
前言 有人认为 AdaBoost 是最好的监督学习的方式. 某种程度上因为它是元算法,也就是说它会是几种分类器的组合.这就好比对于一个问题能够咨询多个 "专家" 的意见了. 组合的 ...
- 【Adaboost算法】C++转C, 分类器结构设计
一.参考OpenCV的CascadeClassifier类LBPEvaluator类 如下,筛选出存放分类器相关信息的成员变量: class CV_EXPORTS_W CascadeClassifie ...
- 几种Boost算法的比较(Discrete AdaBoost, Real AdaBoost, LogitBoost, Gentle Adaboost)
关于boost算法 boost算法是基于PAC学习理论(probably approximately correct)而建立的一套集成学习算法(ensemble learning).其根本思想在于通过 ...
- 浅析人脸检测之Haar分类器方法
一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发 ...
- 分类器是如何做检测的?——CascadeClassifier中的detectMultiScale函数解读
原地址:http://blog.csdn.net/delltdk/article/details/9186875 在进入detectMultiScal函数之前,首先需要对CascadeClassifi ...
- 2、转载一篇,浅析人脸检测之Haar分类器方法
转载地址http://www.cnblogs.com/ello/archive/2012/04/28/2475419.html 浅析人脸检测之Haar分类器方法 [补充] 这是我时隔差不多两年后, ...
- 机器学习-分类器-Adaboost原理
Adaboost原理 Adaboost(AdaptiveBoosting)是一种迭代算法,通过对训练集不断训练弱分类器,然后把这些弱分类器集合起来,构成强分类器.adaboost算法训练的过程中,初始 ...
随机推荐
- 微信企业号 获取AccessToken
目录 1. AccessToken介绍 2. 示例代码 1. AccessToken介绍 1.1 什么是AccessToken AccessToken即访问凭证,业务服务器每次主动调用企业号接口时需要 ...
- Restful资源文章
理解RESTful架构 RESTful API设计指南 RESTful架构详解 NodeJs的RESTful API
- nohup程序后台执行
Linux常用命令,用于不挂断的执行程序. nohup命令:如果你正在运行一个进程,而且你觉得在退出帐户时该进程还不会结束,那么可以使用nohup命令.该命令可以在你退出帐户/关闭终端之后继续运行相应 ...
- 对抗密码破解 —— Web 前端慢 Hash
(更新:https://www.cnblogs.com/index-html/p/frontend_kdf.html ) 0x00 前言 天下武功,唯快不破.但在密码学中则不同.算法越快,越容易破. ...
- 04.SQLServer性能优化之---读写分离&数据同步
汇总篇:http://www.cnblogs.com/dunitian/p/4822808.html#tsql 过段时间再继续写文章吧,本来准备把SQLServer一个系列写完的,最近状态很差很不好, ...
- 协议森林16 小美的桌号(DHCP协议)
作者:Vamei 出处:http://www.cnblogs.com/vamei 转载请先与我联系. DHCP协议用于动态的配置电脑的网络相关参数,如主机的IP地址,路由器出口地址.DNS域名服务器地 ...
- .net 分布式架构之配置中心
开源QQ群: .net 开源基础服务 238543768 开源地址: http://git.oschina.net/chejiangyi/Dyd.BaseService.ConfigManager ...
- OpenCV人脸识别LBPH算法源码分析
1 背景及理论基础 人脸识别是指将一个需要识别的人脸和人脸库中的某个人脸对应起来(类似于指纹识别),目的是完成识别功能,该术语需要和人脸检测进行区分,人脸检测是在一张图片中把人脸定位出来,完成的是搜寻 ...
- AI人工智能系列随笔:syntaxnet 初探(1)
人工智能是 最近的一个比较火的名词,相信大家对于阿尔法狗都不陌生吧?其实我对人工智能以前也是非常抵触的,因为我认为机器人会取代人类,成为地球乃至宇宙的霸主,但是人工智能带给我的这种冲击,我个人感觉是欲 ...
- .NET平台和C#编程的总结
第一章 简单认识.NET框架 (1)首先我们得知道 .NET框架具有两个主要组件:公共语言进行时CLR(Common Language Runtime)和框架类库FCL(Framework ...