设$D(A)\leq D(B)$,从小到大枚举$D(A)$,双指针从大到小枚举$D(B)$。

那么对于权值不超过$D(A)$的边,可以忽略。

对于权值介于$(D(A),D(B)]$之间的边,需要满足那两个点不能都在集合$A$。

对于权值大于$D(B)$的边,需要满足那两个点不在同一个集合。

所以建图判断2-SAT是否有解即可,这可以使用压位Kosaraju算法。

时间复杂度$O(\frac{n^4}{64})$。

#include<cstdio>
#include<algorithm>
#define N 205
using namespace std;
typedef unsigned long long ll;
int n,m,i,j,k,t,q[N<<1],f[N<<1],ans;
struct E{int x,y,w;E(){}E(int _x,int _y,int _w){x=_x,y=_y,w=_w;}}e[N*N];
inline bool cmp(const E&a,const E&b){return a.w<b.w;}
struct BIT{
ll v[4];
void clear(){for(int i=0;i<4;i++)v[i]=0;}
void flip(int x){v[x>>6]^=1ULL<<(x&63);}
int get(int x){return v[x>>6]>>(x&63)&1;}
}v0,v1,g0[N<<1],g1[N<<1];
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
inline void addA(int x,int y){
g0[x].flip(y);
g1[y+n].flip(x);
g0[y].flip(x);
g1[x+n].flip(y);
}
inline void addB(int x,int y){
g0[x+n].flip(y);
g1[y].flip(x);
g0[y+n].flip(x);
g1[x].flip(y);
}
void dfs1(int x){
if(x<n){
v0.flip(x);
for(int i=0;i<4;i++)while(1){
ll o=v1.v[i]&g0[x].v[i];
if(!o)break;
dfs1((i<<6|__builtin_ctzll(o))+n);
}
}else{
v1.flip(x-n);
for(int i=0;i<4;i++)while(1){
ll o=v0.v[i]&g0[x].v[i];
if(!o)break;
dfs1(i<<6|__builtin_ctzll(o));
}
}
q[++t]=x;
}
void dfs2(int x,int y){
f[x]=y;
if(x<n){
v0.flip(x);
for(int i=0;i<4;i++)while(1){
ll o=v1.v[i]&g1[x].v[i];
if(!o)break;
dfs2((i<<6|__builtin_ctzll(o))+n,y);
}
}else{
v1.flip(x-n);
for(int i=0;i<4;i++)while(1){
ll o=v0.v[i]&g1[x].v[i];
if(!o)break;
dfs2(i<<6|__builtin_ctzll(o),y);
}
}
}
inline bool check(){
int i;
v0.clear(),v1.clear();
for(i=0;i<n;i++)v0.flip(i),v1.flip(i);
for(t=i=0;i<n;i++)if(v0.get(i))dfs1(i);
for(i=0;i<n;i++)if(v1.get(i))dfs1(i+n);
for(i=0;i<n;i++)v0.flip(i),v1.flip(i);
for(i=t;i;i--)if(q[i]<n){if(v0.get(q[i]))dfs2(q[i],q[i]);}else if(v1.get(q[i]-n))dfs2(q[i],q[i]);
for(i=0;i<n;i++)if(f[i]==f[i+n])return 0;
return 1;
}
void solve(){
ans=~0U>>1;
sort(e+1,e+m+1,cmp);
for(i=0;i<n+n;i++)g0[i].clear(),g1[i].clear();
for(i=1;i<=m;i++)addA(e[i].x,e[i].y);
for(i=0,j=m;i<=j;i++){
if(i)addA(e[i].x,e[i].y);
while(e[i].w+e[j].w>=ans||check()){
ans=min(ans,e[i].w+e[j].w);
if(j)addB(e[j].x,e[j].y);
if((--j)<i)return;
}
}
}
int main(){
while(~scanf("%d",&n)){
for(m=i=0;i<n;i++)for(j=i+1;j<n;j++)read(k),e[++m]=E(i,j,k);
solve();
printf("%d\n",ans);
}
return 0;
}

  

BZOJ4078 : [Wf2014]Metal Processing Plant的更多相关文章

  1. BZOJ 4078: [Wf2014]Metal Processing Plant

    4078: [Wf2014]Metal Processing Plant Time Limit: 100 Sec  Memory Limit: 128 MBSubmit: 86  Solved: 20 ...

  2. BZOJ 4078: [Wf2014]Metal Processing Plant [放弃了]

    以后再也不做$World Final$的题了................ 还我下午 bzoj上TLE一次后就不敢交了然后去uva交 Claris太神了代码完全看不懂 还有一个代码uva上竟然WA了 ...

  3. 【刷题】BZOJ 4078 [Wf2014]Metal Processing Plant

    Description 定义集合S的价值D(S)为: 现在给你n个元素,并给出其中任意两个元素之间的d(i,j)值 要你将这些元素划分成两个集合A.B. 求min{D(A)+D(B)}. 注:d(i, ...

  4. bzoj 4078: [Wf2014]Metal Processing Plant【二分+2-SAT+枚举+并查集】

    枚举从大到小s1,二分s2(越大越有可能符合),2-SAT判断,ans取min 思路倒是挺简单的,就是二分的时候出了比较诡异的问题,只能二分s2的值,不能在数组上二分... 有个优化,就是当不是二分图 ...

  5. Codeforces Gym 101221G Metal Processing Plant(2-SAT)

    题目链接 题意:有 \(n\) 个元素,第 \(i\) 个数与第 \(j\) 个数之间有一个权值 \(d_{i,j}\),\(d(i,j)=d(j,i)\). 定义函数 \(D(S)=\max\lim ...

  6. BZOJ4078 WF2014Metal Processing Plant(二分答案+2-SAT)

    题面甚至没给范围,由数据可得n<=200.容易想到二分答案,暴力枚举某集合的价值,2-SATcheck一下即可.这样是O(n4logn)的. 2-SAT复杂度已经是下界,考虑如何优化枚举.稍微改 ...

  7. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  8. Processing Images

    https://developer.apple.com/library/content/documentation/GraphicsImaging/Conceptual/CoreImaging/ci_ ...

  9. Working with Metal—Overview

    看完这个 WWDC 之后的总结. Metal 可以在单位时间内提供 10 倍的 draw call 调用. Background About Draw Call 每一次 draw call 调用都必须 ...

随机推荐

  1. PHP Ajax 跨域问题最佳解决方案

    本文通过设置Access-Control-Allow-Origin来实现跨域. 例如:客户端的域名是client.runoob.com,而请求的域名是server.runoob.com. 如果直接使用 ...

  2. win8.1系统的安装方法详细图解教程

    win8.1系统的安装方法详细图解教程 关于win8.1系统的安装其实很简单 但是有的童鞋还不回 所以今天就抽空做了个详细的图解教程, 安装win8.1系统最好用U盘安装,这样最方便简单 而且系统安装 ...

  3. (转)Javascript本地存储小结

    转自:https://i.cnblogs.com/EditPosts.aspx?opt=1 以下是原文: 1. 各种存储方案的简单对比 Cookies:浏览器均支持,容量为4KB UserData:仅 ...

  4. (转)理解MySQL——索引与优化

    参考资料:http://www.cnblogs.com/hustcat/archive/2009/10/28/1591648.html ———————————— 全文: 写在前面:索引对查询的速度有着 ...

  5. HashMap Hasptable的区别

    HashTable的应用非常广泛,HashMap是新框架中用来代替HashTable的类,也就是说建议使用HashMap,不要使用HashTable.可能你觉得HashTable很好用,为什么不用呢? ...

  6. [Unity] 3D数学基础 - 2D旋转矩阵

    2D矩阵的旋转: NewX = X * Cos(α) - Y * Sin(α) NewY = X * Sin(α) + Y * Cos(α) 一般在三角函数中使用的是弧度,我们可以通过下面的公式将角度 ...

  7. github上readme.md 格式

    参考:https://github.com/guoyunsky/Markdown-Chinese-Demo/edit/master/README.md

  8. [Fluent NHibernate]第一个程序

    目录 写在前面 Fluent Nhibernate简介 基本配置 总结 写在前面 在耗时两月,NHibernate系列出炉这篇文章中,很多园友说了Fluent Nhibernate的东东,也激起我的兴 ...

  9. Android studio 相关错误处理

    1.android:theme="@android:style/Theme.Black.NoTitleBar.Fullscreen"  -->  在Activity中设置,表 ...

  10. 详细解读Android中的搜索框—— SearchView

    以前总是自己写的 今天看看别人做的 本篇讲的是如何用searchView实现搜索框,其实原理和之前的没啥差别,也算是个复习吧. 一.Manifest.xml 这里我用一个activity进行信息的输入 ...