题目链接:

E. Centroids

time limit per test

4 seconds

memory limit per test

512 megabytes

input

standard input

output

standard output

Tree is a connected acyclic graph. Suppose you are given a tree consisting of n vertices. The vertex of this tree is called centroid if the size of each connected component that appears if this vertex is removed from the tree doesn't exceed .

You are given a tree of size n and can perform no more than one edge replacement. Edge replacement is the operation of removing one edge from the tree (without deleting incident vertices) and inserting one new edge (without adding new vertices) in such a way that the graph remains a tree. For each vertex you have to determine if it's possible to make it centroid by performing no more than one edge replacement.

Input

The first line of the input contains an integer n (2 ≤ n ≤ 400 000) — the number of vertices in the tree. Each of the next n - 1 lines contains a pair of vertex indices ui and vi (1 ≤ ui, vi ≤ n) — endpoints of the corresponding edge.

Output

Print n integers. The i-th of them should be equal to 1 if the i-th vertex can be made centroid by replacing no more than one edge, and should be equal to 0 otherwise.

Examples
input
3
1 2
2 3
output
1 1 1 
input
5
1 2
1 3
1 4
1 5
output
1 0 0 0 0 

题意:

给出一棵树,要求你最多改变一条边,看这个点能否成为重心;

思路:

树形dp,先转化成有根树,第一次dfs先找到每个节点以下的节点数目和能切断的最多的数目以及最多和次多转移来的节点,第二次dfs就是找答案了;
由于一个那个超过n/2的子树只有一棵,要么来自当前节点的子节点,要么来自父节点,所以在树上进行转移;具体的看代码注释; AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack>
#include <map> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=1e9+7;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=4e5+10;
const int maxn=1e3+20;
const double eps=1e-12; int n,siz[N],ans[N],submax[N],max1[N],max2[N];
vector<int>ve[N]; void dfs(int cur,int fa)
{
siz[cur]=1;//节点数目
submax[cur]=0;//submax[cur]是以cur为根的子树能切掉的最大的节点数目,
int len=ve[cur].size();
for(int i=0;i<len;i++)
{
int x=ve[cur][i];
if(x==fa)continue;
dfs(x,cur);
siz[cur]+=siz[x];
if(submax[x]>submax[cur])
{
max2[cur]=max1[cur];//max2[cur]记录次大,max1[cur]记录最大;
max1[cur]=x;
submax[cur]=submax[x];
}
else if(submax[x]>submax[max2[cur]])max2[cur]=x;
}
if(siz[cur]<=n/2)submax[cur]=siz[cur];
}
void dfs1(int cur,int fa,int mmax)
{
int len=ve[cur].size(),flag=1;
for(int i=0;i<len;i++)
{
int x=ve[cur][i];
if(x==fa)//父节点转移过来
{
int temp=n-siz[cur];
if(temp>n/2&&temp-mmax>n/2)flag=0;
continue;
}
if(siz[x]>n/2)//子节点转移过来
{
if(siz[x]-submax[x]>n/2)flag=0;
}
}
ans[cur]=flag;
for(int i=0;i<len;i++)
{
int x=ve[cur][i];
if(x==fa)continue;
int temp;
if(n-siz[x]<=n/2)temp=n-siz[x];
else
{
if(max1[cur]==x)temp=max(mmax,submax[max2[cur]]);//如果x正好是最大的转移过来的就取mmax和次大的最大值
else temp=max(mmax,submax[max1[cur]]);//否则取mmax与最大的最大值
}
dfs1(x,cur,temp);
}
}
int main()
{
read(n);
int u,v;
For(i,1,n-1)
{
read(u);read(v);
ve[v].push_back(u);
ve[u].push_back(v);
}
dfs(1,0);
dfs1(1,0,0);
for(int i=1;i<=n;i++)printf("%d ",ans[i]);
return 0;
}

  


codeforces 709E E. Centroids(树形dp)的更多相关文章

  1. codeforces 212E IT Restaurants(树形dp+背包思想)

    题目链接:http://codeforces.com/problemset/problem/212/E 题目大意:给你一个无向树,现在用两种颜色去给这颗树上的节点染色.用(a,b)表示两种颜色分别染的 ...

  2. Codeforces 123E Maze(树形DP+期望)

    [题目链接] http://codeforces.com/problemset/problem/123/E [题目大意] 给出一棵,给出从每个点出发的概率和以每个点为终点的概率,求出每次按照dfs序从 ...

  3. CodeForces 77C Beavermuncher-0xFF (树形dp)

    不错的树形dp.一个结点能走多次,树形的最大特点是到达后继的路径是唯一的,那个如果一个结点无法往子结点走,那么子结点就不用考虑了. 有的结点不能走完它的子结点,而有的可能走完他的子节点以后还会剩下一些 ...

  4. bzoj 4424: Cf19E Fairy && codeforces 19E. Fairy【树形dp】

    参考:https://blog.csdn.net/heheda_is_an_oier/article/details/51131641 这个找奇偶环的dp1真是巧妙,感觉像tarjan一样 首先分情况 ...

  5. Codeforces 709E. Centroids 树形DP

    题目链接:http://codeforces.com/contest/709/problem/E 题意: 给你一棵树,你可以任删一条边和加一条边,只要使得其仍然是一棵树,输出每个点是否都能成为重心 题 ...

  6. Codeforces gym101955 A【树形dp】

    LINK 有n个大号和m个小号 然后需要对这些号进行匹配,一个大号最多匹配2个小号 匹配条件是大号和小号构成了前缀关系 字符串长度不超过10 问方案数 思路 因为要构成前缀关系 所以就考虑在trie树 ...

  7. Educational Codeforces Round 52F(树形DP,VECTOR)

    #include<bits/stdc++.h>using namespace std;int n,k;vector<int>son[1000007];int dp[100000 ...

  8. codeforces 696B B. Puzzles(树形dp+概率)

    题目链接: B. Puzzles time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  9. Codeforces 490F Treeland Tour 树形dp

    Treeland Tour 离散化之后, 每个节点维护上升链和下降链, 感觉复杂度有点高, 为啥跑这么快.. #include<bits/stdc++.h> #define LL long ...

随机推荐

  1. Codeforces Round #346 (Div. 2)---E. New Reform--- 并查集(或连通图)

    Codeforces Round #346 (Div. 2)---E. New Reform E. New Reform time limit per test 1 second memory lim ...

  2. 设置让ASP.NET管道接收所有类型的请求

    在web.config文件添加如下一段配置: <configuration> <system.webServer> <modules runAllManagedModul ...

  3. 六个创建模式之工厂方法模式(Factory Method Pattern)

    问题: 在使用简单工厂模式的时候,如果添加新的产品类,则必需修改工厂类,违反了开闭原则. 定义: 定义一个用于创建对象的接口,让子类决定具体实例化哪个产品类.此时工厂和产品都具有相同的继承结构,抽象产 ...

  4. gulp入坑系列(4)——gulp的代码转换

    当然,gulp不仅仅能转换Sass,这里会提到如下转换: jsx转换成常规的JavaScript(说到jsx,玩过react的同学应该是知道的) es6转换为es5 Less,Sass转换为CSS 首 ...

  5. location对象及history对象

     history对象 location 是最有用的BOM对象之一,它提供了与当前窗口中加载的文档有关的信息,还提供了一些导航功能.事实上,location 对象是很特别的一个对象,因为它既是windo ...

  6. SASS语法学习

    一.嵌套 1.选择器嵌套 <header> <nav> <a href=“##”>Home</a> <a href=“##”>About&l ...

  7. 关于SharePoint 的Client object model该何时load和execut query的一点自己的看法

    很多人在用client object model的时候,不知道何时或者该不该load,今天看到一个观点描述这个问题,觉得很有道理,和大家分享.那就是写client object model就像写sql ...

  8. android Android-PullToRefresh 下拉刷新

    1.github下载地址 原作者:  https://github.com/chrisbanes/Android-PullToRefresh 我自己的:  https://github.com/zyj ...

  9. Docker: 解决Docker无法在电信网络中访问外网

    在电信网络中,Docker在build和run时会无法访问外网,原因是docker的默认dns地址是8.8.8.8,由于众所周知的原因,我们需要改写这个地址,方法如下: 修改/etc/sysconfi ...

  10. STL--容器适配器(queue、priority_queue、stack)

    适配器(Adaptor)是提供接口映射的模板类.适配器基于其他类来实现新的功能,成员函数可以被添加.隐藏,也可合并以得到新的功能. STL提供了三个容器适配器:queue.priority_queue ...