Graph Search and Connectivity


Generic Graph Search

Goals 1. find everything findable

2. don't explore anything twice

Generic Algorithm (given graph G, vertex S)

--- initialize S explored (all others unexplored)

--- while possible:

--- choose an edge(u, v) with u explored and v unexplored

--- mark v explored

     1. Breadth-First Search (BFS)     O(m+n) time using a queue

--- explore nodes in 'layers'

--- can compute shortest paths

--- can compute connected components of an undirected graph

The basics:pseudocode

        BFS(Graph G, start vertex s)

(all nodes initially unexplored)

mark s as explored

let Q = queue data structure(FIFO), initialized with s

while Q != 0:

remove the first node of Q, call it v

for each edge(v, w):

if w unexplored

mark w as explored

add into Q (at the end)

          Shortest Paths:

Goal: compute dist(v), the fewest # of edges on a path from s to v

Extra code:

initialize dist(v) = 0 if v == s

when considering edge(v, w):

if w unexplored then set dist(w) = dist(v) + 1

claim: at termination, dist(v) = i  <=>  v in ith layer

          Undirected Connectivity

let G = (V, E) be an undirected graph

Connected components == the 'pieces' of G

Goal: compute all connected components(why? check if network is disconnected, graph visualization, clustering, similarity)

all nodes unexplored

(assume labelled 1 to n)

for i = 1 to n

if i not yet explored

BFS(G, i)      //discovers precisely i's connected components

    2. Depth-First Search (DFS)       O(m+n) time using a stack

--- explore aggressively like a maze, backtrack only when necessary

--- compute topological ordering of directed acycle graph(DAG)

--- compute connected components in directed graphs

pseudocode:

use a stack instead of a queue

recursive version:

DFS(Graph G, start vertex s)

mark s as explored

for every edge(s,v)

if v unexplored

DFS(G,v)

        Application: Topological Sort   (DAG)

Definition: A topological ordering of a directed graph G is a labelling f of G's node's such that:

1. the f(v)'s are the set{1,2,...,n}

2. (u,v)  => f(u) < f(v)

note that if G has directed cycle => no topological ordering

        Straightforward solution to Topological Sort

note: every directed acyclic graph has a sink vertex(入度为0的node,无前驱)

To compute topological ordering:

let v be a sink vertex of G

set f(v) = n

recurse on G - {v}

(1) 从有向图中选一个没有前驱的顶点

(2) 从图中删去该点,并删去从该点出发的所有边

(3) 重复上两步,直到图中再没有有前驱的点为止

        Topological Sort via DFS

        DFS(G, s)

mark s explored

for every edge(s, v)

if v not yet explored

DFS(G, v)

set f(s) = current_label

current_label --

DFS-loop(Graph G)

mark all node unexplored

current_label = n

for each vertex v:

if v unexplored

DFS(G, v)

          3. Computing Strong Components: The Algorithm

Strongly connected Components

Formal Definition: the strongly connected Components(SCCs) of a directed graph G are the equivalance classes of the relation:

u~v <=> u ->v and v -> u in G

Kosaraju's Two-Pass Algorithm   2*DFS = O(m+n)

1. let Gr = G with all arcs reversed

2. run DFS-loop on Gr       <---------- Goal: compute 'magical ordering' of nodes

let f(v) = 'finishing time' of each v

3. run DFS-loop on G        <---------- Goal: discover the SCCs one-by-one

processing nodes in decreasing order of finishing times

SCCs = nodes with the same 'leader'

pseudocode:

DFS(G, i)

make i as explored

set leader(i) = node s

for each arc(i, j):

if j not yet explored:

DFS(G, j)

t++

set f(i) = t      // i's finishing time

DFS-loop(Graph G)

global variable t = 0    // # of nodes pressed so far (for finishing times in 1st pass)

global variable s = Null  // current source vertex  (for leaders in 2nd pass)

Assume nodes labelled 1 to n

for i = n down to 1

if i not yet explored

s = i

DFS(G, i)

Python Code:

import sys
import threading
import copy threading.stack_size(67108864)
sys.setrecursionlimit(300000) def DFS(edges, i, index):
global t, vertices, new_vertices, s, compare
if index == 1: # 1st pass
vertices[i-1][1] = True # mark it explored
if index == 2: # 2nd pass
vertices[compare[i]-1][1] = True
vertices[compare[i]-1].append(s) # set leader(i) = node s
if i in edges:
for v in edges[i]:
if index == 1:
if vertices[v-1][1] == False:
DFS(edges, vertices[v-1][0], index)
if index == 2:
if vertices[compare[v]-1][1] == False:
DFS(edges, vertices[compare[v]-1][0], index) if index == 1:
t = t + 1 # i's finishing time
vertices[i-1].append(t)
temp = vertices[i-1].copy()
temp[1] = False
new_vertices.append(temp)
compare[vertices[i-1][0]] = t def DFS_loop(edges, index):
global t, vertices, new_vertices, s
t = 0 #for finishing times in 1st pass
n = len(vertices)
for i in range(1, n+1):
v = vertices[n-i]
if v[1] == False:
s = v[0]
DFS(edges, v[0], index) def main():
global vertices, new_vertices, compare
f = open('SCC.txt')
_f = list(f)
vertices = list() #[number, False] false indicates unexplored
new_vertices = list() #[number, False, t, s]
edges = dict() # {1:[2,5,6...]...}
edges_rev = dict() # {2:[8,9,5...]...}
compare = dict()
for i in range(0, 875714): #875714 initialize V
vertices.append([i+1, False])
for edge in _f: # initialize E
temp = edge.split()
edge_temp = [int(temp[0]), int(temp[1])]
edge_rev_temp = [edge_temp[1], edge_temp[0]]
if edge_temp[0] not in edges:
edges[edge_temp[0]] = [edge_temp[1]]
else:
edges[edge_temp[0]].append(edge_temp[1])
if edge_rev_temp[0] not in edges_rev:
edges_rev[edge_rev_temp[0]] = [edge_rev_temp[1]]
else:
edges_rev[edge_rev_temp[0]].append(edge_rev_temp[1]) DFS_loop(edges_rev, 1)
vertices = copy.deepcopy(new_vertices)
DFS_loop(edges, 2) result = dict()
for item in vertices: # nodes with the same 'leader'
if item[3] not in result:
result[item[3]] = 1
else:
result[item[3]] = result[item[3]] + 1 r = list() #output the sizes of the 10 largest SCCs
for key in result:
r.append(result[key])
r = sorted(r, reverse = True)
print(r[0:9]) if __name__ == '__main__':
thread = threading.Thread(target = main)
thread. start()

【Python排序搜索基本算法】之深度优先搜索、广度优先搜索、拓扑排序、强联通&Kosaraju算法的更多相关文章

  1. python 实现图的深度优先和广度优先搜索

    在介绍 python 实现图的深度优先和广度优先搜索前,我们先来了解下什么是"图". 1 一些定义 顶点 顶点(也称为"节点")是图的基本部分.它可以有一个名称 ...

  2. C语言数据结构与算法之深度、广度优先搜索

    一.深度优先搜索(Depth-First-Search 简称:DFS) 1.1 遍历过程: (1)从图中某个顶点v出发,访问v. (2)找出刚才第一个被顶点访问的邻接点.访问该顶点.以这个顶点为新的顶 ...

  3. 算法与数据结构基础 - 广度优先搜索(BFS)

    BFS基础 广度优先搜索(Breadth First Search)用于按离始节点距离.由近到远渐次访问图的节点,可视化BFS 通常使用队列(queue)结构模拟BFS过程,关于queue见:算法与数 ...

  4. 基于visual Studio2013解决算法导论之046广度优先搜索

     题目 广度优先搜索 解决代码及点评 // 图的邻接表表示.cpp : 定义控制台应用程序的入口点. // #include <iostream> #include <stac ...

  5. 算法学习记录-图——应用之拓扑排序(Topological Sort)

    这一篇写有向无环图及其它的应用: 清楚概念: 有向无环图(DAG):一个无环的有向图.通俗的讲就是从一个点沿着有向边出发,无论怎么遍历都不会回到出发点上. 有向无环图是描述一项工程或者系统的进行过程的 ...

  6. 有向图的强联通tarjan算法(判断是否为强联通模板)(hdu1269)

    hdu1269 迷宫城堡 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tot ...

  7. 算法数据结构 | 三个步骤完成强连通分量分解的Kosaraju算法

    强连通分量分解的Kosaraju算法 今天是算法数据结构专题的第35篇文章,我们来聊聊图论当中的强连通分量分解的Tarjan算法. Kosaraju算法一看这个名字很奇怪就可以猜到它也是一个根据人名起 ...

  8. POJ 3180-The Cow Prom (图论-有向图强联通tarjan算法)

    题目大意:有n个牛在一块, m条单项绳子, 有m个链接关系, 问有多少个团体内部任意两头牛可以相互可达 解题思路:有向图强连通分量模版图 代码如下: #include<stdio.h> # ...

  9. 深度优先搜索(DFS)与广度优先搜索(BFS)的Java实现

    1.基础部分 在图中实现最基本的操作之一就是搜索从一个指定顶点可以到达哪些顶点,比如从武汉出发的高铁可以到达哪些城市,一些城市可以直达,一些城市不能直达.现在有一份全国高铁模拟图,要从某个城市(顶点) ...

随机推荐

  1. C# 从excel里面复制的1万6千多条记录粘贴到FCKeditor里面,点保存的时候,保存不了,页面没有反应

    客户那边添加公告,是直接从excel里面复制的,有1万6千多条记录,excel文件有6M多. 编辑器用的FCKeditor,也能粘贴上,就是点保存的时候,执行了一段时间就没有反映了,保存不了. 想着可 ...

  2. 2016/10/28 很久没更了 leetcode解题 3sum

    15. 3Sum Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Fi ...

  3. VB6.0 读取CSV文件

    最近做了一个Upload文件的需求,文件的格式为CSV,读取文件的方法整理了一下,如下: 1.先写了一个读取CSV文件的Function: '读取CSV文件 '假设传入的参数strFile=C:\Do ...

  4. Linux下cutecom使用USB转串口线

    http://www.cnblogs.com/pang123hui/archive/2011/05/29/2309888.html 在Linux下的串口调试一直使用minicom,虽说Linux的精髓 ...

  5. C# 根据身份证号码获取简易信息

    public class PackIden { /// <summary> /// 根据身份证获取生日 /// </summary> /// <param name=&q ...

  6. Java复数的四则运算

    import java.util.Scanner;   import com.sun.jndi.url.iiopname.iiopnameURLContextFactory;   public cla ...

  7. JS无缝滚动

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Consolas; color: #2b7ec3 } p.p2 { margin: 0.0px ...

  8. PHP ftp使用

    本文章来总结几个利用php中的ftp功能来实现通过FTP上传文件,有需要学习的朋友可参考参考.ftp_get() 函数从 FTP 服务器上下载一个文件.若成功则返回 true,失败则返回 false. ...

  9. POJ 3468 A Simple Problem with Integers (线段树)

    题意:给定两种操作,一种是区间都加上一个数,另一个查询区间和. 析:水题,线段树. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024 ...

  10. java线程详解(一)

    1,相关概念简介 (1)进程:是一个正在执行的程序.每一个进程执行都有一个执行的顺序,该顺序就是一个执行路径,或者叫一个控制单元.用于分配空间. (2)线程:就是进程中一个独立的控制单元,线程在控制着 ...