Sequence Sum Possibilities
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5537   Accepted: 3641

Description

Most positive integers may be written as a sum of a sequence of at least two consecutive positive integers. For instance,

6 = 1 + 2 + 3
9 = 5 + 4 = 2 + 3 + 4

but 8 cannot be so written.

Write a program which will compute how many different ways an input number may be written as a sum of a sequence of at least two consecutive positive integers.

Input

The first line of input will contain the number of problem instances N on a line by itself, (1 ≤ N ≤ 1000) . This will be followed by N lines, one for each problem instance. Each problem line will have the problem number, a single space and the number to be written as a sequence of consecutive positive integers. The second number will be less than 231 (so will fit in a 32-bit integer).

Output

The output for each problem instance will be a single line containing the problem number, a single space and the number of ways the input number can be written as a sequence of consecutive positive integers.

Sample Input

7
1 6
2 9
3 8
4 1800
5 987654321
6 987654323
7 987654325

Sample Output

1 1
2 2
3 0
4 8
5 17
6 1
7 23
题目大意:输入一个整数n,问总共有多少个连续序列之和为这个数。
解题方法:如果直接从0开始遍历依次肯定超时,在这里这个序列肯定为一个公差为1的等差数列,假设首项为a1,长度为i,如果满足条件,则n = a1 * i + i * (i - 1) / 2;
即n -i * (i - 1) / 2 = a1 * i;也就是说n的值为长度为i,首项为a1的等差数列之和,所以只要判断(n -i * (i - 1) / 2) % i是否为0即可,当然长度i有一个范围,假设a1为最小值1,那么长度i肯定为最大值,n = i + i * (i - 1) / 2,即n = i * (i + 1) / 2,所以i的最大值不会超过sqrt(n * 2.0)。
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <math.h>
using namespace std; int main()
{
int nCase, index, n;
scanf("%d", &nCase);
while (nCase--)
{
int ans = ;
scanf("%d%d", &index, &n);
for (int i = ; i <= sqrt((double)n * 2.0); i++)
{
if ((n - i * (i - ) / ) % i == )
{
ans++;
}
}
printf("%d %d\n", index, ans);
}
return ;
}
 

POJ 2853 Sequence Sum Possibilities的更多相关文章

  1. Poj 2853,2140 Sequence Sum Possibilities(因式分解)

    一.Description Most positive integers may be written as a sum of a sequence of at least two consecuti ...

  2. [POJ 3581]Sequence

    [POJ 3581]Sequence 标签: 后缀数组 题目链接 题意 给你一串序列\(A_i\),保证对于$ \forall i \in [2,n],都有A_1 >A_i$. 现在需要把这个序 ...

  3. Ural 1248 Sequence Sum 题解

    目录 Ural 1248 Sequence Sum 题解 题意 题解 程序 Ural 1248 Sequence Sum 题解 题意 给定\(n\)个用科学计数法表示的实数\((10^{-100}\s ...

  4. POJ 2479 Maximum sum POJ 2593 Max Sequence

    d(A) = max{sum(a[s1]..a[t1]) + sum(a[s2]..a[t2]) | 1<=s1<=t1<s2<=t2<=n} 即求两个子序列和的和的最大 ...

  5. POJ 2442 Sequence

    Pro. 1 给定k个有序表,取其中前n小的数字.组成一个新表,求该表? 算法: 由于  a1[1] < a1[2] < a1[3] ... <a1[n] a2[1] < a2 ...

  6. POJ 2442 - Sequence - [小顶堆][优先队列]

    题目链接:http://poj.org/problem?id=2442 Time Limit: 6000MS Memory Limit: 65536K Description Given m sequ ...

  7. Poj 2478-Farey Sequence 欧拉函数,素数,线性筛

    Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14291   Accepted: 5647 D ...

  8. POJ 3415 Max Sum of Max-K-sub-sequence (线段树+dp思想)

    Max Sum of Max-K-sub-sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  9. POJ 2479 Maximum sum 解题报告

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 40596   Accepted: 12663 Des ...

随机推荐

  1. [游戏模版12] Win32 稳定定时

    >_<:The last time,we learned how to use timer to make the picture run and change show,but some ...

  2. 使用ConditionalScope进行高效的SharePoint CSOM编程

    在上一篇文章中讲述了 ExceptionHandlingScope的使用后,本章主要讲述ConditionalScope的用法. ConditionalScope在设计思路和解决问题上同Excepti ...

  3. Marbles启动信息

    body-parser deprecated undefined extended: provide extended option app.js:40:20 -------------------- ...

  4. MySQL 存储过程 定时任务

    drop procedure if exists move_track_data; delimiter // create procedure move_track_data() begin ; st ...

  5. javaweb学习总结(二十一)——JavaWeb的两种开发模式

    SUN公司推出JSP技术后,同时也推荐了两种web应用程序的开发模式,一种是JSP+JavaBean模式,一种是Servlet+JSP+JavaBean模式. 一.JSP+JavaBean开发模式 1 ...

  6. 为何在font-family属性中设置多个值

    通常前端开发中会对body标签中设置font-family属性多个值,例如: body{padding:0;margin:0;font-size:12px;text-align:left;font-f ...

  7. 地图源改变之后mxd文件打开很慢的问题

    在使用ArcGIS开发电子地图程序时,有时候需要更换服务器地址,这时打开MXD文件就会非常慢,一直没有找到有效的方法,下面是从网上搜到的方法,还没有验证,下次再碰到这个问题的时候,验证一下: (以下方 ...

  8. [原创]推荐一款强大的.NET程序内存分析工具.NET Memory Profiler

    [原创]推荐一款强大的.NET程序内存分析工具.NET Memory Profiler 1 官方网站:http://memprofiler.com/2 下载地址:http://memprofiler. ...

  9. 关于PF_RING/Intel 82599/透明VPN的一些事

    接近崩溃的边缘,今天这篇文章构思地点在医院,小小又生病了,宁可吊瓶不吃药,带了笔记本却无法上网,我什么都不能干,想了解一些东西,只能用3G,不敢 开热点,因为没人给我报销流量,本周末我只有一天时间,因 ...

  10. Java的自动装箱和拆箱的简单讲解

     装箱就是把基础类型封装成一个类.比如把int封装成Integer,这时你就不能把他当成一个数了,而是一个类了,对他的操作就需要用它的方法了. 拆箱就是把类转换成基础类型.比如你算个加法什么的是不能用 ...