CSharpGL(32)矩阵与四元数与角度旋转轴的相互转换
CSharpGL(32)矩阵与四元数与角度旋转轴的相互转换
三维世界里的旋转(rotate),可以用一个3x3的矩阵描述;可以用(旋转角度float+旋转轴vec3)描述。数学家欧拉证明了这两种形式可以相互转化,且多次地旋转可以归结为一次旋转。这实际上就是著名的轨迹球(arcball)方式操纵模型的理论基础。
本文中都设定float angleDegree为旋转角度,vec3 axis为旋转轴。

四元数
定义(angleDegree+axis到四元数)
四元数就是一个四维向量(w, x, y, z),其中w描述旋转的角度(但不是直接的angleDegree值),(x, y, z)描述旋转轴。从angleDegree和axis得到一个四元数的方式比较简单。
public struct Quaternion
{
private float w;
private float x;
private float y;
private float z; /// <summary>
/// Quaternion from a rotation angle and axis.
/// </summary>
/// <param name="angleDegree">angle in degree.</param>
/// <param name="axis">rotation axis.</param>
public Quaternion(float angleDegree, vec3 axis)
{
vec3 normalized = axis.normalize();
double radian = angleDegree * Math.PI / 180.0;
double halfRadian = radian / 2.0;
this.w = (float)Math.Cos(halfRadian);
float sin = (float)Math.Sin(halfRadian);
this.x = sin * normalized.x;
this.y = sin * normalized.y;
this.z = sin * normalized.z;
}
}
先别管为什么四元数是这么定义的,只要知道这个定义就好。这里引入四元数只是为了方便提取出矩阵中蕴含的angleDegree和aixs。四元数的其他用途本文不涉及。
四元数到angleDegree+axis
从上面的定义可以很容易推算出四元数里蕴含的angleDegree和axis。显然得到的axis已经失去了原有的长度,但是axis的长度并不重要,保持在单位长度才是最方便的。
public void Parse(out float angleDegree, out vec3 axis)
{
angleDegree = (float)(Math.Acos(w) * * 180.0 / Math.PI);
axis = (new vec3(x, y, z)).normalize();
}
四元数到矩阵
从四元数到矩阵的推导有点复杂,有很多相关文章,本文就只贴代码了。代码还是很简练的。
/// <summary>
/// Transform this quaternion to equivalent matrix.
/// </summary>
/// <returns></returns>
public mat3 ToRotationMatrix()
{
vec3 col0 = new vec3(
* (x * x + w * w) - ,
* x * y + * w * z,
* x * z - * w * y);
vec3 col1 = new vec3(
* x * y - * w * z,
* (y * y + w * w) - ,
* y * z + * w * x);
vec3 col2 = new vec3(
* x * z + * w * y,
* y * z - * w * x,
* (z * z + w * w) - ); return new mat3(col0, col1, col2);
}

矩阵到四元数
矩阵到四元数的推导也有点复杂,借助了一些数学技巧,本文不详述,直接贴代码。
/// <summary>
/// Transform this matrix to a <see cref="Quaternion"/>.
/// </summary>
/// <returns></returns>
struct mat3
{
public Quaternion ToQuaternion()
{
// input matrix.
float m11 = this.col0.x, m12 = this.col1.x, m13 = this.col2.x;
float m21 = this.col0.y, m22 = this.col1.y, m23 = this.col2.y;
float m31 = this.col0.z, m32 = this.col1.z, m33 = this.col2.z;
// output quaternion
float x = , y = , z = , w = ;
// detect biggest in w, x, y, z.
float fourWSquaredMinus1 = +m11 + m22 + m33;
float fourXSquaredMinus1 = +m11 - m22 - m33;
float fourYSquaredMinus1 = -m11 + m22 - m33;
float fourZSquaredMinus1 = -m11 - m22 + m33;
int biggestIndex = ;
float biggest = fourWSquaredMinus1;
if (fourXSquaredMinus1 > biggest)
{
biggest = fourXSquaredMinus1;
biggestIndex = ;
}
if (fourYSquaredMinus1 > biggest)
{
biggest = fourYSquaredMinus1;
biggestIndex = ;
}
if (fourZSquaredMinus1 > biggest)
{
biggest = fourZSquaredMinus1;
biggestIndex = ;
}
// sqrt and division
float biggestVal = (float)(Math.Sqrt(biggest + ) * 0.5);
float mult = 0.25f / biggestVal;
// get output
switch (biggestIndex)
{
case :
w = biggestVal;
x = (m23 - m32) * mult;
y = (m31 - m13) * mult;
z = (m12 - m21) * mult;
break; case :
x = biggestVal;
w = (m23 - m32) * mult;
y = (m12 + m21) * mult;
z = (m31 + m13) * mult;
break; case :
y = biggestVal;
w = (m31 - m13) * mult;
x = (m12 + m21) * mult;
z = (m23 + m32) * mult;
break; case :
z = biggestVal;
w = (m12 - m21) * mult;
x = (m31 + m13) * mult;
y = (m23 + m32) * mult;
break; default:
break;
} return new Quaternion(w, -x, -y, -z);
}
}
matrix to quaternion
好了,现在矩阵 ⇋ 四元数 ⇋ (angleDegree+axis)之间的转换就全有了。
BTW,OpenGL里的glRotate{fd}(angle, axis)里的angle是以角度为单位的。为了统一,我将CSharpGL里的所有angle都设定为以角度为单位了。
下载
CSharpGL已在GitHub开源,欢迎对OpenGL有兴趣的同学加入(https://github.com/bitzhuwei/CSharpGL)
总结
现在解决了矩阵与(angleDegree+axis)之间的转换问题,就可以从容地解析轨迹球算出的旋转矩阵,抽取出里面蕴含的(angleDegree+axis)了。这就可以单独更新模型的旋转角度和旋转轴,避免了对整个模型矩阵的破坏。
CSharpGL(32)矩阵与四元数与角度旋转轴的相互转换的更多相关文章
- 从矩阵(matrix)角度讨论PCA(Principal Component Analysis 主成分分析)、SVD(Singular Value Decomposition 奇异值分解)相关原理
0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助. 这里推荐Mit的Gilb ...
- Matrix4x4矩阵变换、欧拉角转四元数、角度转弧度
Matrix4x4 // 重置矩阵 ][]) { m[][] = ; m[][] = ; m[][] = ; m[][] = ; m[][] = ; m[][] = ; m[][] = ; m[][] ...
- BIT祝威博客汇总(Blog Index)
+BIT祝威+悄悄在此留下版了个权的信息说: 关于硬件(Hardware) <穿越计算机的迷雾>笔记 继电器是如何成为CPU的(1) 继电器是如何成为CPU的(2) 关于操作系统(Oper ...
- Unity手游之路<四>3d旋转-四元数,欧拉角和变幻矩阵
http://blog.csdn.net/janeky/article/details/17272625 今天我们来谈谈关于Unity中的旋转.主要有三种方式.变换矩阵,四元数和欧拉角. 定义 变换矩 ...
- opengl矩阵向量
如何创建一个物体.着色.加入纹理,给它们一些细节的表现,但因为它们都还是静态的物体,仍是不够有趣.我们可以尝试着在每一帧改变物体的顶点并且重配置缓冲区从而使它们移动,但这太繁琐了,而且会消耗很多的处理 ...
- 四元数(Quaternions)简介
经常在代码中看到Quaternions,也知道它是用来表达三维空间的旋转的,但一直没有更深的理解.这两天终于花点时间看了看维基百科的介绍,算是多了解了点.做个记录吧! 本质上而言,四元数是一个数学概念 ...
- 四元数与欧拉角(RPY角)的相互转换
RPY角与Z-Y-X欧拉角 描述坐标系{B}相对于参考坐标系{A}的姿态有两种方式.第一种是绕固定(参考)坐标轴旋转:假设开始两个坐标系重合,先将{B}绕{A}的X轴旋转$\gamma$,然后绕{A} ...
- 【转载】Unity中矩阵的平移、旋转、缩放
By:克森 简介 在这篇文章中,我们将会学到几个概念:平移矩阵.旋转矩阵.缩放矩阵.在学这几个基本概念的同时,我们会用到 Mesh(网格).数学运算.4x4矩阵的一些简单的操作.但由于克森也是新手,文 ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第二十二章:四元数(QUATERNIONS)
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第二十二章:四元数(QUATERNIONS) 学习目标 回顾复数,以及 ...
随机推荐
- 使用ServiceStack构建Web服务
提到构建WebService服务,大家肯定第一个想到的是使用WCF,因为简单快捷嘛.首先要说明的是,本人对WCF不太了解,但是想快速建立一个WebService,于是看到了MSDN上的这一篇文章 Bu ...
- Java学习之反射机制及应用场景
前言: 最近公司正在进行业务组件化进程,其中的路由实现用到了Java的反射机制,既然用到了就想着好好学习总结一下,其实无论是之前的EventBus 2.x版本还是Retrofit.早期的View注解框 ...
- 代码的坏味道(18)——依恋情结(Feature Envy)
坏味道--依恋情结(Feature Envy) 特征 一个函数访问其它对象的数据比访问自己的数据更多. 问题原因 这种气味可能发生在字段移动到数据类之后.如果是这种情况,你可能想将数据类的操作移动到这 ...
- Effective java笔记(二),所有对象的通用方法
Object类的所有非final方法(equals.hashCode.toString.clone.finalize)都要遵守通用约定(general contract),否则其它依赖于这些约定的类( ...
- css选择器
常用css选择器,希望对大家有所帮助,不喜勿喷. 1.*:通用选择器 * { margin: 0; padding: 0; } 选择页面上的全部元素,通常用于清除浏览器默认样式,不推荐使用. 2.#i ...
- 安卓GreenDao框架一些进阶用法整理
大致分为以下几个方面: 一些查询指令整理 使用SQL语句进行特殊查询 检测表字段是否存在 数据库升级 数据库表字段赋初始值 一.查询指令整理 1.链式执行的指令 return mDaoSession. ...
- MongoDB学习笔记三—增删改文档上
插入insert 单条插入 > db.foo.insert({"bar":"baz"}) WriteResult({ }) 批量插入 > db.fo ...
- Linux环境变量设置
修改环境变量PATH 最近为root添加一个环境变量发现sudo su进去没有变化所以总结了一下所有设置环境变量的方法: 查看PATH:echo $PATH 直接在命令行修改,就可以使用,但是只有在当 ...
- 学习笔记:发现一个IE版本判断的好方法
web开发就不得不面对浏览器兼容性问题,特别是IE的兼容问题.在前端代码中经常要处理一些兼容格式,为了解决这个问题网上找了找识别浏览器版本的方法. 常规js方法 找到一个方法,还不错,可以识别出各 ...
- raspberrypi(树莓派)上安装mono和jexus,运行asp.net程序
参考网址: http://www.linuxdot.net/ http://www.cnblogs.com/mayswind/p/3279380.html http://www.raspberrypi ...