CSharpGL(32)矩阵与四元数与角度旋转轴的相互转换

三维世界里的旋转(rotate),可以用一个3x3的矩阵描述;可以用(旋转角度float+旋转轴vec3)描述。数学家欧拉证明了这两种形式可以相互转化,且多次地旋转可以归结为一次旋转。这实际上就是著名的轨迹球(arcball)方式操纵模型的理论基础。

本文中都设定float angleDegree为旋转角度,vec3 axis为旋转轴。

+BIT祝威+悄悄在此留下版了个权的信息说:

四元数

+BIT祝威+悄悄在此留下版了个权的信息说:

定义(angleDegree+axis到四元数)

四元数就是一个四维向量(w, x, y, z),其中w描述旋转的角度(但不是直接的angleDegree值),(x, y, z)描述旋转轴。从angleDegree和axis得到一个四元数的方式比较简单。

     public struct Quaternion
{
private float w;
private float x;
private float y;
private float z; /// <summary>
/// Quaternion from a rotation angle and axis.
/// </summary>
/// <param name="angleDegree">angle in degree.</param>
/// <param name="axis">rotation axis.</param>
public Quaternion(float angleDegree, vec3 axis)
{
vec3 normalized = axis.normalize();
double radian = angleDegree * Math.PI / 180.0;
double halfRadian = radian / 2.0;
this.w = (float)Math.Cos(halfRadian);
float sin = (float)Math.Sin(halfRadian);
this.x = sin * normalized.x;
this.y = sin * normalized.y;
this.z = sin * normalized.z;
}
}

先别管为什么四元数是这么定义的,只要知道这个定义就好。这里引入四元数只是为了方便提取出矩阵中蕴含的angleDegree和aixs。四元数的其他用途本文不涉及。

+BIT祝威+悄悄在此留下版了个权的信息说:

四元数到angleDegree+axis

从上面的定义可以很容易推算出四元数里蕴含的angleDegree和axis。显然得到的axis已经失去了原有的长度,但是axis的长度并不重要,保持在单位长度才是最方便的。

         public void Parse(out float angleDegree, out vec3 axis)
{
angleDegree = (float)(Math.Acos(w) * * 180.0 / Math.PI);
axis = (new vec3(x, y, z)).normalize();
}
+BIT祝威+悄悄在此留下版了个权的信息说:

四元数到矩阵

从四元数到矩阵的推导有点复杂,有很多相关文章,本文就只贴代码了。代码还是很简练的。

         /// <summary>
/// Transform this quaternion to equivalent matrix.
/// </summary>
/// <returns></returns>
public mat3 ToRotationMatrix()
{
vec3 col0 = new vec3(
* (x * x + w * w) - ,
* x * y + * w * z,
* x * z - * w * y);
vec3 col1 = new vec3(
* x * y - * w * z,
* (y * y + w * w) - ,
* y * z + * w * x);
vec3 col2 = new vec3(
* x * z + * w * y,
* y * z - * w * x,
* (z * z + w * w) - ); return new mat3(col0, col1, col2);
}
实际上得到的矩阵就是这样的:
+BIT祝威+悄悄在此留下版了个权的信息说:

矩阵到四元数

矩阵到四元数的推导也有点复杂,借助了一些数学技巧,本文不详述,直接贴代码。

         /// <summary>
/// Transform this matrix to a <see cref="Quaternion"/>.
/// </summary>
/// <returns></returns>
struct mat3
{
public Quaternion ToQuaternion()
{
// input matrix.
float m11 = this.col0.x, m12 = this.col1.x, m13 = this.col2.x;
float m21 = this.col0.y, m22 = this.col1.y, m23 = this.col2.y;
float m31 = this.col0.z, m32 = this.col1.z, m33 = this.col2.z;
// output quaternion
float x = , y = , z = , w = ;
// detect biggest in w, x, y, z.
float fourWSquaredMinus1 = +m11 + m22 + m33;
float fourXSquaredMinus1 = +m11 - m22 - m33;
float fourYSquaredMinus1 = -m11 + m22 - m33;
float fourZSquaredMinus1 = -m11 - m22 + m33;
int biggestIndex = ;
float biggest = fourWSquaredMinus1;
if (fourXSquaredMinus1 > biggest)
{
biggest = fourXSquaredMinus1;
biggestIndex = ;
}
if (fourYSquaredMinus1 > biggest)
{
biggest = fourYSquaredMinus1;
biggestIndex = ;
}
if (fourZSquaredMinus1 > biggest)
{
biggest = fourZSquaredMinus1;
biggestIndex = ;
}
// sqrt and division
float biggestVal = (float)(Math.Sqrt(biggest + ) * 0.5);
float mult = 0.25f / biggestVal;
// get output
switch (biggestIndex)
{
case :
w = biggestVal;
x = (m23 - m32) * mult;
y = (m31 - m13) * mult;
z = (m12 - m21) * mult;
break; case :
x = biggestVal;
w = (m23 - m32) * mult;
y = (m12 + m21) * mult;
z = (m31 + m13) * mult;
break; case :
y = biggestVal;
w = (m31 - m13) * mult;
x = (m12 + m21) * mult;
z = (m23 + m32) * mult;
break; case :
z = biggestVal;
w = (m12 - m21) * mult;
x = (m31 + m13) * mult;
y = (m23 + m32) * mult;
break; default:
break;
} return new Quaternion(w, -x, -y, -z);
}
}

matrix to quaternion

好了,现在矩阵 ⇋ 四元数 ⇋ (angleDegree+axis)之间的转换就全有了。

BTW,OpenGL里的glRotate{fd}(angle, axis)里的angle是以角度为单位的。为了统一,我将CSharpGL里的所有angle都设定为以角度为单位了。

+BIT祝威+悄悄在此留下版了个权的信息说:

下载

CSharpGL已在GitHub开源,欢迎对OpenGL有兴趣的同学加入(https://github.com/bitzhuwei/CSharpGL

+BIT祝威+悄悄在此留下版了个权的信息说:

总结

现在解决了矩阵与(angleDegree+axis)之间的转换问题,就可以从容地解析轨迹球算出的旋转矩阵,抽取出里面蕴含的(angleDegree+axis)了。这就可以单独更新模型的旋转角度和旋转轴,避免了对整个模型矩阵的破坏。

CSharpGL(32)矩阵与四元数与角度旋转轴的相互转换的更多相关文章

  1. 从矩阵(matrix)角度讨论PCA(Principal Component Analysis 主成分分析)、SVD(Singular Value Decomposition 奇异值分解)相关原理

    0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助. 这里推荐Mit的Gilb ...

  2. Matrix4x4矩阵变换、欧拉角转四元数、角度转弧度

    Matrix4x4 // 重置矩阵 ][]) { m[][] = ; m[][] = ; m[][] = ; m[][] = ; m[][] = ; m[][] = ; m[][] = ; m[][] ...

  3. BIT祝威博客汇总(Blog Index)

    +BIT祝威+悄悄在此留下版了个权的信息说: 关于硬件(Hardware) <穿越计算机的迷雾>笔记 继电器是如何成为CPU的(1) 继电器是如何成为CPU的(2) 关于操作系统(Oper ...

  4. Unity手游之路<四>3d旋转-四元数,欧拉角和变幻矩阵

    http://blog.csdn.net/janeky/article/details/17272625 今天我们来谈谈关于Unity中的旋转.主要有三种方式.变换矩阵,四元数和欧拉角. 定义 变换矩 ...

  5. opengl矩阵向量

    如何创建一个物体.着色.加入纹理,给它们一些细节的表现,但因为它们都还是静态的物体,仍是不够有趣.我们可以尝试着在每一帧改变物体的顶点并且重配置缓冲区从而使它们移动,但这太繁琐了,而且会消耗很多的处理 ...

  6. 四元数(Quaternions)简介

    经常在代码中看到Quaternions,也知道它是用来表达三维空间的旋转的,但一直没有更深的理解.这两天终于花点时间看了看维基百科的介绍,算是多了解了点.做个记录吧! 本质上而言,四元数是一个数学概念 ...

  7. 四元数与欧拉角(RPY角)的相互转换

    RPY角与Z-Y-X欧拉角 描述坐标系{B}相对于参考坐标系{A}的姿态有两种方式.第一种是绕固定(参考)坐标轴旋转:假设开始两个坐标系重合,先将{B}绕{A}的X轴旋转$\gamma$,然后绕{A} ...

  8. 【转载】Unity中矩阵的平移、旋转、缩放

    By:克森 简介 在这篇文章中,我们将会学到几个概念:平移矩阵.旋转矩阵.缩放矩阵.在学这几个基本概念的同时,我们会用到 Mesh(网格).数学运算.4x4矩阵的一些简单的操作.但由于克森也是新手,文 ...

  9. Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第二十二章:四元数(QUATERNIONS)

    原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第二十二章:四元数(QUATERNIONS) 学习目标 回顾复数,以及 ...

随机推荐

  1. c#与java的区别

    经常有人问这种问题,用了些时间java之后,发现这俩玩意除了一小部分壳子长的还有能稍微凑合上,基本上没什么相似之处,可以说也就是马甲层面上的相似吧,还是比较短的马甲... 一般C#多用于业务系统的开发 ...

  2. 让姑姑不再划拳 码农也要有原则 : SOLID via C#

    “姑娘,别这样.我们是有原则的.” “一个有原则的程序猿是不会写出 “摧毁地球” 这样的程序的,他们会写一个函数叫 “摧毁行星”而把地球当一个参数传进去.” “对,是时候和那些只会滚键盘的麻瓜不同了, ...

  3. tomcat开发远程调试端口以及利用eclipse进行远程调试

    一.tomcat开发远程调试端口 方法1 WIN系统 在catalina.bat里:  SET CATALINA_OPTS=-server -Xdebug -Xnoagent -Djava.compi ...

  4. 协议森林16 小美的桌号(DHCP协议)

    作者:Vamei 出处:http://www.cnblogs.com/vamei 转载请先与我联系. DHCP协议用于动态的配置电脑的网络相关参数,如主机的IP地址,路由器出口地址.DNS域名服务器地 ...

  5. 用scikit-learn学习DBSCAN聚类

    在DBSCAN密度聚类算法中,我们对DBSCAN聚类算法的原理做了总结,本文就对如何用scikit-learn来学习DBSCAN聚类做一个总结,重点讲述参数的意义和需要调参的参数. 1. scikit ...

  6. C#数组,List,Dictionary的相互转换

    本篇文章会向大家实例讲述以下内容: 将数组转换为List 将List转换为数组 将数组转换为Dictionary 将Dictionary 转换为数组 将List转换为Dictionary 将Dicti ...

  7. [开发笔记] Graph Databases on developing

    TimeWall is a graph databases github It be used to apply mathematic model and social network with gr ...

  8. Autofac - MVC/WebApi中的应用

    Autofac前面写了那么多篇, 其实就是为了今天这一篇, Autofac在MVC和WebApi中的应用. 一.目录结构 先看一下我的目录结构吧, 搭了个非常简单的架构, IOC(web), IBLL ...

  9. IteratorPattern(迭代子模式)

    /** * 迭代子模式 * @author TMAC-J * 聚合:某一类对象的集合 * 迭代:行为方式,用来处理聚合 * 是一种行为模式,用于将聚合本身和操作聚合的行为分离 * Java中的COLL ...

  10. 浏览器的兼容模式下的button中文字垂直方向不居中显示

    <button style="cursor:pointer;vertical-align: middle;" >删除</button> 这时候垂直不居中. ...