E. Military Problem

time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

In this problem you will have to help Berland army with organizing their command delivery system.

There are nn officers in Berland army. The first officer is the commander of the army, and he does not have any superiors. Every other officer has exactly one direct superior. If officer aa is the direct superior of officer bb, then we also can say that officer bb is a direct subordinate of officer aa.

Officer xx is considered to be a subordinate (direct or indirect) of officer yy if one of the following conditions holds:

  • officer yy is the direct superior of officer xx;
  • the direct superior of officer xx is a subordinate of officer yy.

For example, on the picture below the subordinates of the officer 33 are: 5,6,7,8,95,6,7,8,9.

The structure of Berland army is organized in such a way that every officer, except for the commander, is a subordinate of the commander of the army.

Formally, let's represent Berland army as a tree consisting of nn vertices, in which vertex uu corresponds to officer uu. The parent of vertex uucorresponds to the direct superior of officer uu. The root (which has index 11) corresponds to the commander of the army.

Berland War Ministry has ordered you to give answers on qq queries, the ii-th query is given as (ui,ki)(ui,ki), where uiui is some officer, and kiki is a positive integer.

To process the ii-th query imagine how a command from uiui spreads to the subordinates of uiui. Typical DFS (depth first search) algorithm is used here.

Suppose the current officer is aa and he spreads a command. Officer aa chooses bb — one of his direct subordinates (i.e. a child in the tree) who has not received this command yet. If there are many such direct subordinates, then aa chooses the one having minimal index. Officer aa gives a command to officer bb. Afterwards, bb uses exactly the same algorithm to spread the command to its subtree. After bb finishes spreading the command, officer aa chooses the next direct subordinate again (using the same strategy). When officer aa cannot choose any direct subordinate who still hasn't received this command, officer aa finishes spreading the command.

Let's look at the following example:

If officer 11 spreads a command, officers receive it in the following order: [1,2,3,5,6,8,7,9,4][1,2,3,5,6,8,7,9,4].

If officer 33 spreads a command, officers receive it in the following order: [3,5,6,8,7,9][3,5,6,8,7,9].

If officer 77 spreads a command, officers receive it in the following order: [7,9][7,9].

If officer 99 spreads a command, officers receive it in the following order: [9][9].

To answer the ii-th query (ui,ki)(ui,ki), construct a sequence which describes the order in which officers will receive the command if the uiui-th officer spreads it. Return the kiki-th element of the constructed list or -1 if there are fewer than kiki elements in it.

You should process queries independently. A query doesn't affect the following queries.

Input

The first line of the input contains two integers nn and qq (2≤n≤2⋅105,1≤q≤2⋅1052≤n≤2⋅105,1≤q≤2⋅105) — the number of officers in Berland army and the number of queries.

The second line of the input contains n−1n−1 integers p2,p3,…,pnp2,p3,…,pn (1≤pi<i1≤pi<i), where pipi is the index of the direct superior of the officer having the index ii. The commander has index 11 and doesn't have any superiors.

The next qq lines describe the queries. The ii-th query is given as a pair (ui,kiui,ki) (1≤ui,ki≤n1≤ui,ki≤n), where uiui is the index of the officer which starts spreading a command, and kiki is the index of the required officer in the command spreading sequence.

Output

Print qq numbers, where the ii-th number is the officer at the position kiki in the list which describes the order in which officers will receive the command if it starts spreading from officer uiui. Print "-1" if the number of officers which receive the command is less than kiki.

You should process queries independently. They do not affect each other.

Example

input

Copy

9 6
1 1 1 3 5 3 5 7
3 1
1 5
3 4
7 3
1 8
1 9

output

Copy

3
6
8
-1
9
4

题解:记录每个节点的时间戳和其有几个子节点即可;DFS

AC代码为:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 10;
int n, m, a, b, c = 1, d;
bool vis[maxn] = { false };
vector<int> graph[maxn];
int level[maxn],pos[maxn],child[maxn];
int dfs(int src) 
{
    vis[src] = true;
    pos[c] = src;
    level[src] = c++;
    int temp = 1;
    for (int i = 0; i<graph[src].size(); i++) 
    {
        if (!vis[graph[src][i]]) temp += dfs(graph[src][i]);
    }
    return  child[src] = temp;
}
int main() 
{
    cin >> n >> m;
    for (int i = 2; i <= n; i++) 
    {
        cin >> a;
        graph[a].push_back(i);
    }
    dfs(1);
    while (m--) 
    {
        cin >> a >> b;
        if (child[a]<b) cout << -1 << endl;
        else cout << pos[level[a] + b - 1] << endl;
    }
    return 0;
}

CodeForces1006E- Military Problem的更多相关文章

  1. Military Problem CodeForces 1006E (dfs序)

    J - Military Problem CodeForces - 1006E 就是一道dfs序的问题 给定一个树, 然后有q次询问. 每次给出u,k, 求以u为根的子树经过深搜的第k个儿子,如果一个 ...

  2. CodeForces 1006E Military Problem(DFS,树的选择性遍历)

    http://codeforces.com/contest/1006/problem/E 题意: 就是给出n,m,共n个点[1,n],m次询问.第二行给出n-1个数a[i],2<=i<=n ...

  3. Codeforces Round #498 (Div. 3)--E. Military Problem

    题意问,这个点的然后求子树的第i个节点. 这道题是个非常明显的DFS序: 我们只需要记录DFS的入DFS的时间,以及出DFS的时间,也就是DFS序, 然后判断第i个子树是否在这个节点的时间段之间. 最 ...

  4. Military Problem CodeForces - 1006E(dfs搜一下 标记一下)

    题意: 就是有一颗树  然后每次询问 父结点 的 第k个结点是不是他的子嗣...是的话就输出这个子嗣..不是 就输出-1 解析: 突然想到后缀数组的sa 和 x的用法..就是我们可以用一个id标记当前 ...

  5. Codeforces Round #498 (Div. 3) E. Military Problem (DFS)

    题意:建一颗以\(1\)为根结点的树,询问\(q\)次,每次询问一个结点,问该结点的第\(k\)个子结点,如果不存在则输出\(-1\). 题解:该题数据范围较大,需要采用dfs预处理的方法,我们从结点 ...

  6. 树&图 记录

    A - Lake Counting POJ - 2386 最最最最最基础的dfs 挂这道题为了提高AC率(糖水不等式 B - Paint it really, really dark gray Cod ...

  7. Codeforces Div3 #498 A-F

                                                                               . A. Adjacent Replacement ...

  8. Codeforces Round #498 (Div. 3) 简要题解

    [比赛链接] https://codeforces.com/contest/1006 [题解] Problem A. Adjacent Replacements        [算法] 将序列中的所有 ...

  9. DFS序专题

    牛客专题之DFS序 简介 dfs序: 每个节点在dfs深度优先遍历中的进出栈的时间序列,也就是tarjan算法中的dfn数组. 画个图理解一下: 这棵树的dfs序:1 3 2 4 2 5 6 7 6 ...

随机推荐

  1. Python之tkinter.messagebox弹窗

    messagebox:tkinter的消息框.对话框 一.messagebox.showinfo(title='提示', message='错误') from tkinter import * fro ...

  2. [git]关于github的一些用法笔记(入门)

    本视频来自于观看尚硅谷B站教学:https://www.bilibili.com/video/av10475153?from=search&seid=9735863941344749813 而 ...

  3. C#实现整型数据字任意编码任意进制的转换和逆转换

    实现如下: using System; using System.Collections.Generic; using System.Linq; using System.Text;  namespa ...

  4. FB力挺的Pytorch深度学习 书本来了

    获得 fb首席科学家力挺的 pytorch教程 发布啦, 看截图 ![file](https://img2018.cnblogs.com/blog/1876748/201911/1876748-201 ...

  5. bash:加减乘除(bc、let)

    bc *. echo "$2 * $2" | bc > file let 如果只是 let a=1 和 a=1,它们没有区别,但是 let 还可以用于带赋值的运算,例如 le ...

  6. JavaWeb02-Servlet

    Servlet概述 生命周期方法: l  void init(ServletConfig):出生之后(1次): l  void service(ServletRequest request, Serv ...

  7. linux 如何把一个装好的系统做成镜像(文件备份)

    linux 如何把一个装好的系统做成镜像(文件备份)  我来答 浏览 11851 次来自电脑网络类芝麻团 2016-01-19 案例1(命令式操作) 像'ghost'那些备份系统,系统出了问题就恢复 ...

  8. MAC终端中tree命令

    Mac没有自带的tree命令,需要额外安装才可以,操作方法有两种: 一.用find命令模拟tree效果 1.mac下默认是没有 tree命令的,不过我们可以使用find命令模拟出tree命令的效果,如 ...

  9. Java描述设计模式(24):备忘录模式

    本文源码:GitHub·点这里 || GitEE·点这里 一.生活场景 1.场景描述 常见的视频播放软件都具备这样一个功能:假设在播放视频西游记,如果这时候切换播放视频红楼梦,当再次切回播放西游记时, ...

  10. github上传文件让别人下载--xdd

    一.可以下载的条件 仓库要为公开(public) 该文件不可预览或者是图片,如.rar  .gif .png .doc .pdf 等格式 二.打开文件的预览界面,如下 三.将最上面的地址复制给别人即可 ...