洛谷 P3128 [USACO15DEC]最大流Max Flow

洛谷传送门

JDOJ 3027: USACO 2015 Dec Platinum 1.Max Flow

JDOJ传送门

Description

Farmer John has installed a new system of N−1pipes to transport milk between the ), conveniently numbered. Each pipe connects a pair of stalls, and all stalls are connected to each-other via paths of pipes.

Input

The first line of the input contains Nand.

The next K lines each contain two integers s and t describing the endpoint stalls of a path through which milk is being pumped.

Output

An integer specifying the maximum amount of milk pumped through any stall in the barn.

Sample Input

5 10 3 4 1 5 4 2 5 4 5 4 5 4 3 5 4 3 4 3 1 3 3 5 5 4 1 5 3 4

Sample Output

9

Source

2015~2016

题目大意:

FJ给他的牛棚的N(2≤N≤50,000)个隔间之间安装了N-1根管道,隔间编号从1到N。所有隔间都被管道连通了。

FJ有K(1≤K≤100,000)条运输牛奶的路线,第i条路线从隔间si运输到隔间ti。一条运输路线会给它的两个端点处的隔间以及中间途径的所有隔间带来一个单位的运输压力,你需要计算压力最大的隔间的压力是多少。

题解:

树链剖分模板类题。

只不过这次变成了区间修改(+1),以及整个区间的最大值维护。

所以我们写线段树的时候一定要注意相关函数的写法,不再是求和的线段树写法了。

我们用一个数组维护线段树节点表示区间的最大值。那么我们在pushdown打lazy标记的时候,就只能+=k,而不是+=(r-l+1)*k 。

原理也很简单,如果修改区间全包含当前区间,那么当前区间的线段树数组维护的最大值都可以加上1,因为它的左儿子和右儿子全部加1,对最终统计答案并没有丝毫影响。

代码:

#include<cstdio>
#include<algorithm>
#define lson pos<<1
#define rson pos<<1|1
using namespace std;
const int maxn=50001;
int n,k,tot,cnt;
int head[maxn],nxt[maxn<<1],to[maxn<<1];
int deep[maxn],size[maxn],son[maxn],fa[maxn];
int top[maxn],id[maxn];
int fuck[maxn<<2],lazy[maxn<<2],sum[maxn<<2];
char *p1,*p2,buf[100000];
#define nc() (p1==p2 && (p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
int read()
{
int x=0,f=1;
char ch=nc();
while(ch<48){if(ch=='-') f=-1;ch=nc();}
while(ch>=48) x=x*10+ch-'0',ch=nc();
return x*f;
}
void add(int x,int y)
{
to[++tot]=y;
nxt[tot]=head[x];
head[x]=tot;
}
void dfs1(int x,int f)
{
deep[x]=deep[f]+1;
fa[x]=f;
size[x]=1;
for(int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(y==f)
continue;
dfs1(y,x);
size[x]+=size[y];
if(!son[x]||size[y]>size[son[x]])
son[x]=y;
}
}
void dfs2(int x,int t)
{
id[x]=++cnt;
top[x]=t;
if(!son[x])
return;
dfs2(son[x],t);
for(int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(y==fa[x]||y==son[x])
continue;
dfs2(y,y);
}
}
void mark(int pos,int l,int r,int k)
{
sum[pos]+=k;
lazy[pos]+=k;
}
void pushdown(int pos,int l,int r)
{
int mid=(l+r)>>1;
mark(lson,l,mid,lazy[pos]);
mark(rson,mid+1,r,lazy[pos]);
lazy[pos]=0;
}
void update(int pos,int l,int r,int x,int y,int k)
{
int mid=(l+r)>>1;
if(x<=l && r<=y)
{
mark(pos,l,r,k);
return;
}
pushdown(pos,l,r);
if(x<=mid)
update(lson,l,mid,x,y,k);
if(y>mid)
update(rson,mid+1,r,x,y,k);
sum[pos]=max(sum[lson],sum[rson]);
}
void upd_chain(int x,int y,int k)
{
while(top[x]!=top[y])
{
if(deep[top[x]]<deep[top[y]])
swap(x,y);
update(1,1,n,id[top[x]],id[x],k);
x=fa[top[x]];
}
if(deep[x]<deep[y])
swap(x,y);
update(1,1,n,id[y],id[x],k);
}
int main()
{
n=read();k=read();
for(int i=1;i<n;i++)
{
int x,y;
x=read();y=read();
add(x,y);
add(y,x);
}
dfs1(1,0);
dfs2(1,1);
while(k--)
{
int x,y;
x=read();y=read();
upd_chain(x,y,1);
}
printf("%d",sum[1]);
return 0;
}

USACO Max Flow的更多相关文章

  1. BZOJ 4390: [Usaco2015 dec]Max Flow

    4390: [Usaco2015 dec]Max Flow Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 177  Solved: 113[Submi ...

  2. 洛谷P3128 [USACO15DEC]最大流Max Flow [树链剖分]

    题目描述 Farmer John has installed a new system of  pipes to transport milk between the  stalls in his b ...

  3. HackerRank "Training the army" - Max Flow

    First problem to learn Max Flow. Ford-Fulkerson is a group of algorithms - Dinic is one of it.It is ...

  4. Max Flow

    Max Flow 题目描述 Farmer John has installed a new system of N−1 pipes to transport milk between the N st ...

  5. min cost max flow算法示例

    问题描述 给定g个group,n个id,n<=g.我们将为每个group分配一个id(各个group的id不同).但是每个group分配id需要付出不同的代价cost,需要求解最优的id分配方案 ...

  6. [Luogu 3128] USACO15DEC Max Flow

    [Luogu 3128] USACO15DEC Max Flow 最近跟 LCA 干上了- 树剖好啊,我再也不想写倍增了. 以及似乎成功转成了空格选手 qwq. 对于每两个点 S and T,求一下 ...

  7. [Usaco2015 dec]Max Flow 树上差分

    [Usaco2015 dec]Max Flow Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 353  Solved: 236[Submit][Sta ...

  8. 洛谷P3128 [USACO15DEC]最大流Max Flow

    P3128 [USACO15DEC]最大流Max Flow 题目描述 Farmer John has installed a new system of N-1N−1 pipes to transpo ...

  9. BZOJ4390: [Usaco2015 dec]Max Flow

    BZOJ4390: [Usaco2015 dec]Max Flow Description Farmer John has installed a new system of N−1 pipes to ...

随机推荐

  1. Spring Boot 2.2.2.RELEASE 版本中文参考文档【3.1】

    使用Spring Boot 本节将详细介绍如何使用Spring Boot.它涵盖了诸如构建系统,自动配置以及如何运行应用程序之类的主题.我们还将介绍一些Spring Boot最佳实践.尽管Spring ...

  2. Apply Grouping to List View Data 将分组应用于列表视图数据

    This lesson will teach you how to apply grouping to List View data. For this purpose, you will group ...

  3. Git实战指南----跟着haibiscuit学Git(第十一篇)

    笔名:  haibiscuit 博客园: https://www.cnblogs.com/haibiscuit/ Git地址: https://github.com/haibiscuit?tab=re ...

  4. echarts 双Y轴图表

    直接代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF ...

  5. ESPCMS P8 stable version Front-end reflective xss

    Download the source code first In the directory espcms_web\espcms_load.php line 67 if (!is_file($mod ...

  6. Android微信九宫格图片展示控件

    版权声明:本文为xing_star原创文章,转载请注明出处! 本文同步自http://javaexception.com/archives/214 Android微信九宫格图片展示控件 半年前,公司产 ...

  7. Docker动态添加端口,不需要重新建立镜像

    Docker容器在运行期间有时可能会需要修改或者添加暴露的端口,但是有时候运行的容器又不想再另外建立一个新的镜像.这时可以找到docker容器的存放地方,然后直接修改配置文件. 我们的容器都是保存在/ ...

  8. August 18th, 2019. Week 34th, Sunday

    Fear doesn't shut you down, it wakes you up. 恐惧不会消磨你的意志,它能激发你的潜能. We all know that fear is powerful, ...

  9. 搭建Harbor

    搭建Harbor 一.安装准备 二.安装docker-ce 三.安装docker-compose 四.安装harbor 5.1下载安装程序 5.2配置harbor.yml 5.3运行install.s ...

  10. [PHP]关于连接MySQL的问题

    概述 PHP中无论使用MySQL函数抑或PDO连接MySQL服务器,都允许有两种方式,一是通过TCP网络层,一是通过unix socket: PHP并没有给出指明用何种方式去连接数据库,决定使用何种方 ...