CCF-CSP题解 201703-4 地铁修建
求1-n最长边最小的路径。
最短路变形。dis值向后延申的方式是:$$dis[j]=min(dis[j],max(dis[i],w(i,j))$$
显然满足dijkstra贪心的选择方式。spfa也当然可以用。
写上三种方式,就当是模板好了。
spfa
复杂度:\(O(kE)/O(VE)\)
spfa的主要思想是不断松弛。注意spfa的更新策略,先更新\(dis\)值,再根据\(vis\)判断是否丢到\(queue\)中。
#include <bits/stdc++.h>
const int maxn = 100000;
const int maxm = 200000;
using namespace std;
int n, m;
int to[maxm * 2 + 10];
int w[maxm * 2 + 10];
int nex[maxm * 2 + 10];
int head[maxn + 10], cnt = 0;
void addEdge(int a, int b, int c)
{
to[cnt] = b; w[cnt] = c;
nex[cnt] = head[a]; head[a] = cnt++;
to[cnt] = a; w[cnt] = c;
nex[cnt] = head[b]; head[b] = cnt++;
}
int vis[maxn + 10];
int dis[maxn + 10];
void spfa()
{
queue<int> q;
dis[1] = 0;
q.push(1);
vis[1] = 1;
while (!q.empty())
{
int x = q.front(); q.pop();
vis[x] = 0;
// printf("current node: %d %d\n", x, dis[x]);
for (int i = head[x]; i != -1; i = nex[i])
{
int l = to[i];
if (max(dis[x], w[i]) < dis[l])
{
dis[l] = max(dis[x], w[i]);
if (!vis[l])
{
q.push(l);
vis[l] = 1;
}
}
}
}
}
int main()
{
scanf("%d%d", &n, &m);
memset(head, -1, sizeof(head));
for (int i = 1, a, b, c; i <= m; i++)
{
scanf("%d%d%d", &a, &b, &c);
addEdge(a, b, c);
}
memset(vis, 0, sizeof(vis));
memset(dis, 0x3f, sizeof(dis));
spfa();
printf("%d\n", dis[n]);
return 0;
}
dijkstra
会超时。
复杂度:\(O(V^2)\)
dijkstra的主要思想是一共\(V\)次贪心的选择当前未确定点中\(dis\)值最小的那一个确定。
#include <bits/stdc++.h>
const int inf = 0x3f3f3f3f;
const int maxn = 100000;
const int maxm = 200000;
using namespace std;
int n, m;
int to[maxm * 2 + 10];
int w[maxm * 2 + 10];
int nex[maxm * 2 + 10];
int head[maxn + 10], cnt = 0;
void addEdge(int a, int b, int c)
{
to[cnt] = b; w[cnt] = c;
nex[cnt] = head[a]; head[a] = cnt++;
to[cnt] = a; w[cnt] = c;
nex[cnt] = head[b]; head[b] = cnt++;
}
int done[maxn + 10];
int dis[maxn + 10];
void dijkstra()
{
dis[1] = 0;
for (int i = 1; i <= n; i++)
{
int x = 0, mmin = inf;
for (int j = 1; j <= n; j++)
{
if (!done[j] && dis[j] < mmin)
mmin = dis[x = j];
}
done[x] = 1;
for (int j = head[x]; j != -1; j = nex[j])
{
int l = to[j];
dis[l] = min(dis[l], max(dis[x], w[j]));
}
}
}
int main()
{
scanf("%d%d", &n, &m);
memset(head, -1, sizeof(head));
for (int i = 1, a, b, c; i <= m; i++)
{
scanf("%d%d%d", &a, &b, &c);
addEdge(a, b, c);
}
memset(done, 0, sizeof(done));
memset(dis, 0x3f, sizeof(dis));
dijkstra();
printf("%d\n", dis[n]);
return 0;
}
heap_dijkstra
复杂度(stl优先队列实现,由于每条边最多被访问一次,堆中最多会有\(E\)个节点):\(O(ElogE)\),当图趋于完全图时,复杂度趋于\(O(V^2logV)\),应当使用一般实现的dijkstra算法。
堆优化dijkstra,主要思想是利用堆加速每一次值最小(未确定)的点的选择。实际实现略有不同,所以复杂度并非\(O(VlogV)\)。
#include <bits/stdc++.h>
const int inf = 0x3f3f3f3f;
const int maxn = 100000;
const int maxm = 200000;
using namespace std;
int n, m;
int to[maxm * 2 + 10];
int w[maxm * 2 + 10];
int nex[maxm * 2 + 10];
int head[maxn + 10], cnt = 0;
void addEdge(int a, int b, int c)
{
to[cnt] = b; w[cnt] = c;
nex[cnt] = head[a]; head[a] = cnt++;
to[cnt] = a; w[cnt] = c;
nex[cnt] = head[b]; head[b] = cnt++;
}
struct tNode
{
int d, u; // estimated dis, id of vertex
tNode(int dd, int uu): d(dd), u(uu){}
bool operator < (const tNode &y) const
{
return d > y.d;
}
};
int done[maxn + 10];
int dis[maxn + 10];
void heap_dijkstra()
{
priority_queue<tNode> q;
dis[1] = 0;
q.push(tNode(0, 1));
while (!q.empty())
{
tNode x = q.top(); q.pop();
int u = x.u;
if (done[u])
continue;
done[u] = 1;
for (int i = head[u]; i != -1; i = nex[i])
{
int l = to[i];
if (dis[l] > max(dis[u], w[i]))
{
dis[l] = max(dis[u], w[i]);
q.push(tNode(dis[l], l));
}
}
}
}
int main()
{
scanf("%d%d", &n, &m);
memset(head, -1, sizeof(head));
for (int i = 1, a, b, c; i <= m; i++)
{
scanf("%d%d%d", &a, &b, &c);
addEdge(a, b, c);
}
memset(done, 0, sizeof(done));
memset(dis, 0x3f, sizeof(dis));
heap_dijkstra();
printf("%d\n", dis[n]);
return 0;
}
CCF-CSP题解 201703-4 地铁修建的更多相关文章
- CCF CSP 201703-4 地铁修建
博客中的文章均为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201703-4 地铁修建 问题描述 A市有n个交通枢纽,其中1号和n号非常重要,为了加强运输能力,A市决定在1号到n ...
- CCF CSP 201703
CCF CSP 2017·03 做了一段时间的CCF CSP试题,个人感觉是这样分布的 A.B题基本纯暴力可满分 B题留心数据范围 C题是个大模拟,留心即可 D题更倾向于图论?(个人做到的D题基本都是 ...
- ccf 201703-4 地铁修建(95)(并查集)
ccf 201703-4 地铁修建(95) 使用并查集,将路径按照耗时升序排列,依次加入路径,直到1和n连通,这时加入的最后一条路径,就是所需要修建的时间最长的路径. #include<iost ...
- CSP 201703-4 地铁修建 最小生成树+并查集
地铁修建 试题编号: 201703-4 试题名称: 地铁修建 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 A市有n个交通枢纽,其中1号和n号非常重要,为了加强运输能力, ...
- CSP 201703-4 地铁修建【最小生成树+并查集】
问题描述 试题编号: 201703-4 试题名称: 地铁修建 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 A市有n个交通枢纽,其中1号和n号非常重要,为了加强运输能力,A市 ...
- CCF(地铁修建):向前星+dijikstra+求a到b所有路径中最长边中的最小值
地铁修建 201703-4 这题就是最短路的一种变形,不是求两点之间的最短路,而是求所有路径中的最长边的最小值. 这里还是使用d数组,但是定义不同了,这里的d[i]就是表示从起点到i的路径中最长边中的 ...
- CCF CSP 201412-4 最优灌溉
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201412-4 最优灌溉 问题描述 雷雷承包了很多片麦田,为了灌溉这些麦田,雷雷在第一个麦田挖 ...
- CCF CSP 201703-3 Markdown
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201703-3 Markdown 问题描述 Markdown 是一种很流行的轻量级标记语言(l ...
- CCF CSP 201312-3 最大的矩形
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201312-3 最大的矩形 问题描述 在横轴上放了n个相邻的矩形,每个矩形的宽度是1,而第i( ...
- CCF CSP 201609-3 炉石传说
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201609-3 炉石传说 问题描述 <炉石传说:魔兽英雄传>(Hearthston ...
随机推荐
- Js获取宽高度的归纳总结
首先,先吓唬一下我们的小白们!在js中的描述宽高的可以细分有22种. window.innerWidth //除去菜单栏的窗口宽度 window.innerHeight//除去菜单栏的窗口高度 win ...
- vue 优化小技巧 之 require.context()
1.require.context() 回忆一下 当我们引入组件时 第一步 创建一个子组件 第二步 import ... form ... 第三步 components:{..} 第四步 页面使用 & ...
- web前端之css基础
CSS选择器 元素选择器 p{color:red;} ID选择器 #li{ background-color:red; } 类选择器 .c1{ font-size:15px; } 注意: 样式类名不要 ...
- 2019牛客暑期多校训练营(第九场) E All men are brothers
传送门 知识点:并查集+组合数学 并查集合并操作可以理解为使得两个集合的人互相成为朋友,也就是两个集合并在了一起,答案是要求从所有人中挑出四个互相不是朋友的四个人,比较基础的组合数学知识,但因为每个集 ...
- 【Android - 自定义View】之View的工作过程简介
View的工作过程分为三个过程: View的measure过程: View的layout过程: View的draw过程. 我们知道,一个Activity就是一个窗口,这个窗口中包含一个Window.一 ...
- 特殊权限set_uid、set_gid、stick_bit、软链接、硬链接文件 使用介绍
第2周第4次课(3月29日) 课程内容:2.18 特殊权限set_uid2.19 特殊权限set_gid2.20 特殊权限stick_bit2.21 软链接文件2.22 硬链接文件 2.18 ...
- linux虚拟机中FTP匿名访问模式介绍与配置
FTP分3种访问模式,分别是:匿名访问模式,本地用户模式及虚拟用户模式 匿名访问是一种最不安全的验证模式,任何人都可以无需密码验证就登陆到FTP服务端主机,这 种模式一般只用来保存不重要的公开文件,尤 ...
- python1:基础数据类型(上)
https://www.geekdigging.com/2019/10/13/2870915864/ 1.数字 在python的数字有4钟数据类型,分别是: int(有符号整型) long(长整型) ...
- 转:领域模型中的实体类分为四种类型:VO、DTO、DO、PO
经常会接触到VO,DO,DTO的概念,本文从领域建模中的实体划分和项目中的实际应用情况两个角度,对这几个概念进行简析.得出的主要结论是:在项目应用中,VO对应于页面上需要显示的数据(表单),DO对应于 ...
- 源码分析 RocketMQ DLedger 多副本存储实现
目录 1.DLedger 存储相关类图 1.1 DLedgerStore 1.2 DLedgerMemoryStore 1.3 DLedgerMmapFileStore 2.DLedger 存储 对标 ...