题目链接

problem

考虑一个边权为非负整数的无向连通图,节点编号为\(1\) 到 \(N\),试求出一条从 \(1\) 号节点到 \(N\) 号节点的路径,使得路径上经过的边的权值的 \(XOR\) 和最大。

路径可以重复经过某些点或边,当一条边在路径中出现了多次时,其权值在计算 \(XOR\) 和时也要被计算相应多的次数,具体见样例。

solution

考虑先确定一条从\(1\)到\(n\)的不含环的路径。

如图,我们先选择\(1-2-3-4-9-10\)这条路径,然后发现,我们在3这个位置可以通过\(3-5\)这条边,去环里面转一圈,然后再回来。因为\(3-5\)这条边走了两边。所以增加的边权就是这个环的异或和。

这个我们就可以猜想了。我们先选择任意一个可以从\(1-n\)的路径,称之为链。然后该图中所有的环都是可以产生贡献的。所以我们把这条链的异或和和各个环的异或和全部扔到线性基里去。然后求最大值就行了。

为什么这条链可以任意选呢。因为如果有其他的路径可以到达\(n\),必定与该链形成了环。只要选择那个环就相当于走了另外一条路径。

如图

我们可以选择以\(1-2-3-4-9-10\)或者是\(1-2-3-4-11-12-13-9-10\)作为链。

不管以哪一条为链只要异或上这个蓝色的环。就会变成另外一条链。

code

/*
* @Author: wxyww
* @Date: 2019-07-23 14:59:35
* @Last Modified time: 2019-07-23 15:09:13
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<ctime>
using namespace std;
typedef long long ll;
const int N = 100100;
#define int ll
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
struct node {
int v,nxt;ll w;
}e[N << 1];
int head[N],ejs;
void add(int u,int v,int w) {
e[++ejs].v = v;e[ejs].w = w;e[ejs].nxt = head[u];head[u] = ejs;
}
int vis[N];
ll dis[N],p[N];
void ins(ll x) {
for(int i = 63;i >= 0;--i) {
if(!(x >> i & 1)) continue;
if(!p[i]) {
p[i] = x;break;
}
else x ^= p[i];
}
}
ll query(ll x) {
ll ans = x;
for(int i = 63;i >= 0;--i) if((ans ^ p[i]) > ans) ans ^= p[i];
return ans;
}
void dfs(int u,int father) {
vis[u] = 1;;
for(int i = head[u];i;i = e[i].nxt) {
int v = e[i].v;
if(v == father) continue;
if(vis[v]) {
ins(dis[u] ^ e[i].w ^ dis[v]);continue;
}
else dis[v] = dis[u] ^ e[i].w,dfs(v,u);
}
} main() {
int n = read(),m = read();
for(int i = 1;i <= m;++i) {
int u = read(),v = read();ll w = read();
add(u,v,w);add(v,u,w);
}
dfs(1,0);
cout<<query(dis[n]);
return 0;
}

bzoj2115 Xor的更多相关文章

  1. 洛谷.3733.[HAOI2017]八纵八横(线性基 线段树分治 bitset)

    LOJ 洛谷 最基本的思路同BZOJ2115 Xor,将图中所有环的异或和插入线性基,求一下线性基中数的异或最大值. 用bitset优化一下,暴力的复杂度是\(O(\frac{qmL^2}{w})\) ...

  2. 【bzoj2115】 Xor

    www.lydsy.com/JudgeOnline/problem.php?id=2115 (题目链接) 题意 给出一张图,可能有重边和自环,在图中找出一条从1-n的路径,使得经过的路径的权值的异或和 ...

  3. 【BZOJ2115】Xor(线性基)

    [BZOJ2115]Xor(线性基) 题面 BZOJ Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si ...

  4. 【BZOJ2115】[Wc2011] Xor 高斯消元求线性基+DFS

    [BZOJ2115][Wc2011] Xor Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ...

  5. 【BZOJ-2115】Xor 线性基 + DFS

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2142  Solved: 893[Submit][Status] ...

  6. BZOJ2115 [Wc2011] Xor

    Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 ...

  7. BZOJ2115:[WC2011] Xor(线性基)

    Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 ...

  8. 【题解】 bzoj2115: [Wc2011] Xor (线性基+dfs)

    bzoj2115,戳我戳我 Solution: 看得题解(逃,我太菜了,想不出这种做法 那么丢个链接 Attention: 板子别写错了 又写错了这次 \(long long\)是左移63位,多了会溢 ...

  9. bzoj千题计划194:bzoj2115: [Wc2011] Xor

    http://www.lydsy.com/JudgeOnline/problem.php?id=2115 边和点可以重复经过,那最后的路径一定是从1到n的一条路径加上许多环 dfs出任意一条路径的异或 ...

随机推荐

  1. for循环创建的a标签,当点击时如何确定点击的是哪一个标签?

    创建 代码: js: 效果: 原因: html代码:这种获取选中标签的方式,是通过监听body来实现的,所以body上要增加这个onclick(this)

  2. 【洛谷5465】[PKUSC2018] 星际穿越(倍增)

    点此看题面 大致题意: 给定\(l_{2\sim n}\),其中\(l_i\)表示\([l_i,i-1]\)的所有点与\(i\)之间存在一条长度为\(1\)的双向路径.每次询问给出\(l,r,x\), ...

  3. Jenkins登录后空白页

    进入.jenkins所在的目录 编辑config.xml文件 重启jenkins

  4. eclipse强行停止buliding workspace

    使用Eclipse的过程中可能会遇到buliding workspace卡在一半走不动的情况. 出现这个情况往往是因为Eclipse太调皮了,需要拉出去打屁股,打一顿就好了. 开玩笑的,事实上出现这个 ...

  5. Redis for OPS 05:哨兵HA Sentinel

    写在前面的话 上一节的主从环境能够解决我们保证数据安全性的问题,但是却无法解决我们在主节点挂掉的时候服务继续使用的问题,同时也不能自动切换新的主. 我们运维的目的肯定是希望即使主库挂掉一个,服务依旧能 ...

  6. MVC过滤器:自定义异常过滤器

    一.异常过滤器 异常筛选器用于实现IExceptionFilter接口,并在ASP.NET MVC管道执行期间引发了未处理的异常时执行.异常筛选器可用于执行诸如日志记录或显示错误页之类的任务.Hand ...

  7. SpringMVC详解------参数绑定

    SpringMVC详解------参数绑定  转载于:https://blog.csdn.net/swebin/article/details/92795422 目录 1.SpringMVC 参数绑定 ...

  8. E203 CSR rtl实现分析

    CSR状态控制寄存器,每个hart都有自己的CSR.对于每个hart,可以配置的状态寄存器是4k.CSR寄存器的功能见:https://www.cnblogs.com/mikewolf2002/p/1 ...

  9. python 生成 树状结构

    树状结构: 字典里只有一个键值对, key 为根, 值为一个列表, 列表里的某个或多个元素可以再进行分支(分支还是列表) 比如: 邮件的发件人, 收件人, 转发关系树状结构 forwarding_re ...

  10. 查找字段的筛选-使用addCustomView

    关注本人微信和易信公众号: 微软动态CRM专家罗勇 ,回复231或者20161031可方便获取本文,同时可以在第一间得到我发布的最新的博文信息,follow me!我的网站是 www.luoyong. ...