RBF神经网络

RBF神经网络通常只有三层,即输入层、中间层和输出层。其中中间层主要计算输入x和样本矢量c(记忆样本)之间的欧式距离的Radial Basis Function (RBF)的值,输出层对其做一个线性的组合。

径向基函数:

RBF神经网络的训练可以分为两个阶段:
第一阶段为无监督学习,从样本数据中选择记忆样本/中心点;可以使用聚类算法,也可以选择随机给定的方式。

第二阶段为监督学习,主要计算样本经过RBF转换后,和输出之间的关系/权重;可以使用BP算法计算、也可以使用简单的数学公式计算。

1. 随机初始化中心点
2. 计算RBF中的激活函数值,每个中心点到样本的距离
3. 计算权重,原函数:Y=GW
4. W = G^-1Y

RBF网络能够逼近任意非线性的函数(因为使用的是一个局部的激活函数。在中心点附
近有最大的反应;越接近中心点则反应最大,远离反应成指数递减;就相当于每个神
经元都对应不同的感知域)。

可以处理系统内难以解析的规律性,具有很好的泛化能力,并且具有较快的学习速度。
有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、
模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。

当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网
络称为全局逼近网络。由于对于每次输入,网络上的每一个权值都要调整,从而导致
全局逼近网络的学习速度很慢,比如BP网络。

如果对于输入空间的某个局部区域只有少数几个连接权值影响输出,则该网络称为局
部逼近网络,比如RBF网络。

RBF和BP神经网络的对比

BP神经网络(使用Sigmoid激活函数)是全局逼近;RBF神经网络(使用径向基函数作为激活函数)是局部逼近;
相同点:

1. RBF神经网络中对于权重的求解也可以使用BP算法求解。

不同点:

1. 中间神经元类型不同(RBF:径向基函数;BP:Sigmoid函数)
2. 网络层次数量不同(RBF:3层;BP:不限制)
3. 运行速度的区别(RBF:快;BP:慢)

简单的RBF神经网络代码实现

# norm求模,pinv求逆
from scipy.linalg import norm, pinv
import numpy as np from matplotlib import pyplot as plt
import matplotlib as mpl
mpl.rcParams["font.sans-serif"] = ["SimHei"]
np.random.seed(28) class RBF:
"""
RBF径向基神经网络
"""
def __init__(self, input_dim, num_centers, out_dim):
"""
初始化函数
:param input_dim: 输入维度数目
:param num_centers: 中间的核数目
:param out_dim:输出维度数目
"""
self.input_dim = input_dim
self.out_dim = out_dim
self.num_centers = num_centers
self.centers = [np.random.uniform(-1, 1, input_dim) for i in range(num_centers)]
self.beta = 8
self.W = np.random.random((self.num_centers, self.out_dim)) def _basisfunc(self, c, d):
return np.exp(-self.beta * norm(c - d) ** 2) def _calcAct(self, X):
G = np.zeros((X.shape[0], self.num_centers), float)
for ci, c in enumerate(self.centers):
for xi, x in enumerate(X):
G[xi, ci] = self._basisfunc(c, x)
return G def train(self, X, Y):
"""
进行模型训练
:param X: 矩阵,x的维度必须是给定的n * input_dim
:param Y: 列的向量组合,要求维度必须是n * 1
:return:
"""
# 随机初始化中心点
rnd_idx = np.random.permutation(X.shape[0])[:self.num_centers]
self.centers = [X[i, :] for i in rnd_idx]
# 相当于计算RBF中的激活函数值
G = self._calcAct(X)
# 计算权重==> Y=GW ==> W = G^-1Y
self.W = np.dot(pinv(G), Y) def test(self, X):
""" x的维度必须是给定的n * input_dim"""
G = self._calcAct(X)
Y = np.dot(G, self.W)
return Y

测试上面的代码:

# 构造数据
n = 100
x = np.linspace(-1, 1, n).reshape(n, 1)
y = np.sin(3 * (x + 0.5) ** 3 - 1)
# RBF神经网络
rbf = RBF(1, 20, 1)
rbf.train(x, y)
z = rbf.test(x)
plt.figure(figsize=(12, 8))
plt.plot(x, y, 'ko',label="原始值")
plt.plot(x, z, 'r-', linewidth=2,label="预测值")
plt.legend()
plt.xlim(-1.2, 1.2)
plt.show()

效果图片:

RBF训练

RBF函数中心,扩展常数,输出权值都应该采用监督学习算法进行训练,经历一个误差修正学习的过程,与BP网络的学习原理一样.同样采用梯度下降爱法,定义目标函数为:

ei为输入第i个样本时候的误差。

RBF神经网络的更多相关文章

  1. RBF神经网络和BP神经网络的关系

    作者:李瞬生链接:https://www.zhihu.com/question/44328472/answer/128973724来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...

  2. RBF神经网络——直接看公式,本质上就是非线性变换后的线性变化(RBF神经网络的思想是将低维空间非线性不可分问题转换成高维空间线性可分问题)

    Deeplearning Algorithms tutorial 谷歌的人工智能位于全球前列,在图像识别.语音识别.无人驾驶等技术上都已经落地.而百度实质意义上扛起了国内的人工智能的大旗,覆盖无人驾驶 ...

  3. RBF神经网络学习算法及与多层感知器的比较

    对于RBF神经网络的原理已经在我的博文<机器学习之径向基神经网络(RBF NN)>中介绍过,这里不再重复.今天要介绍的是常用的RBF神经网络学习算法及RBF神经网络与多层感知器网络的对比. ...

  4. 基于HHT和RBF神经网络的故障检测——第二篇论文读后感

    故障诊断主要包括三部分: 1.故障信号检测方法(定子电流信号检测 [ 定子电流幅值和电流频谱 ] ,振动信号检测,温度信号检测,磁通检测法,绝缘检测法,噪声检测法) 2.故障信号的处理方法,即故障特征 ...

  5. RBF神经网络通用函数 newrb, newrbe

      RBF神经网络通用函数 newrb, newrbe 1.newrb 其中P为输入向量,T为输出向量,GOAL为均方误差的目标,SPREED为径向基的扩展速度.返回值是一个构建好的网络,用newrb ...

  6. RBF神经网络的matlab简单实现

    径向基神经网络 1.径向基函数 (Radial Basis Function,RBF) 神经网络是一种性能良好的前向网络,具有最佳逼近.训练简洁.学习收敛速度快以及克服局部最小值问题的性能,目前已经证 ...

  7. 简洁的BP及RBF神经网络代码

    BP神经网络 function [W,err]=BPTrain(data,label,hiddenlayers,nodes,type) %Train the bp artial nueral net ...

  8. RBF径向基神经网络——乳腺癌医学诊断建模

    案例描述 近年来疾病早期诊断越来越受到医学专家的重视,从而产生了各种疾病诊断的新方法.乳癌最早的表现是患乳出现单发的.无痛性并呈进行性生长的小肿块.肿块位于外上象限最多见,其次是乳头.乳晕区和内上象限 ...

  9. RBF(径向基)神经网络

    只要模型是一层一层的,并使用AD/BP算法,就能称作 BP神经网络.RBF 神经网络是其中一个特例.本文主要包括以下内容: 什么是径向基函数 RBF神经网络 RBF神经网络的学习问题 RBF神经网络与 ...

随机推荐

  1. 面试中常见的算法之Java中的递归

    1.方法定义中调用方法本身的现象2.递归注意实现 1) 要有出口,否则就是死递归 2) 次数不能太多,否则就内存溢出 3) 构造方法不能递归使用3.递归解决问题的思想和图解: 分解和合并[先分解后合并 ...

  2. Azkaban Condition Flow (条件工作流) 使用简介

    本文上接<Azkaban Flow 2.0 使用简介>,对Azkaban Condition Flow (条件工作流) 做简单介绍 目录 目录 条件工作流 介绍 作用 使用方式 支持的运算 ...

  3. 【DFS例题】等式

    题目如下: 这道题依然是一道dfs(要求输出方案数很明显用dfs呐) 首先一个模板贴上来: void dfs()//参数用来表示状态 { if(到达终点状态) { ...//根据题意添加 return ...

  4. bs4——BeautifulSoup模块:解析网页

    解析由requests模块请求到的网页 import requests from bs4 import BeautifulSoup headers = {'User-Agent': 'Mozilla/ ...

  5. 关于vue项目font字体图标库导入未显示的问题

    运行项目时,弹出以下信息:

  6. 为什么说是时候拥抱.NET CORE了?

    微软和社区已经做了大量艰苦的工作,使.Net Core成为市场上具有竞争力的框架,帮助开发人员快速开发具有最佳性能和可扩展性的强大应用程序.做的最棒的事情是.Net Framework开发人员不需要任 ...

  7. 《ElasticSearch6.x实战教程》之父-子关系文档

    第七章-父-子关系文档 打虎亲兄弟,上阵父子兵. 本章作为复杂搜索的铺垫,介绍父子文档是为了更好的介绍复杂场景下的ES操作. 在非关系型数据库数据库中,我们常常会有表与表的关联查询.例如学生表和成绩表 ...

  8. Asp.Net Core SwaggerUI 接入

    Asp.Net Core SwaggerUI 接入 简单了解 swagger的目的简单来说就是,不用为每个接口手动写接口文档,因为它是根据接口自动生成的,接口更改时文档也同步更新,减少了手动更新的麻烦 ...

  9. java反射构建对象和方法的反射调用

    Java反射技术应用广泛,其能够配置:类的全限定名,方法和参数,完成对象的初始化,设置是反射某些方法.可以增强java的可配置性. 1.1 通过反射构建对象(无参数): 例如我们使用 ReflectS ...

  10. VBox on 14.04: Kernel driver not installed (rc=-1908) [duplicate]

    这几天刚刚装上Ubuntu的系统开始写Android代码,真心是流畅了很多,但是也出现了很多的问题. 还好 有大神护佑,童鞋博客首页,点击查看吧. 刚刚又遇到了一个新的问题,那就是我想用genymot ...