Python-基于向量机SVM的文本分类
项目代码见 Github:
1.算法介绍
2.代码所用数据
详情参见http://qwone.com/~jason/20Newsgroups/
文件结构
├─doc_classification.py
├─stopwords.txt
├─vocabulary.txt
├─train.data
├─train.label
├─train.map
├─test.data
├─test.label
└─test.map
python代码
需要安装的库:
pandas, liblinearutil
注:Windows平台下 liblinearutil 安装包(32/64)
# doc_classification.py
import pandas as pd
import math
from liblinearutil import *
import time
# 读取数据
def loadOriginData(src='train'):
# train.data
dataSrc = r'%s.data' % src
# train.label
labelSrc = r'%s.label' % src
label = pd.read_table(labelSrc, sep=' ', names=['label'])
# train.map
mapSrc = r'%s.map' % src
# 每个文档拥有的terms
doc2term = {}
# 每个term出现在哪些文档
term2doc = {}
# 每个类别下有哪些docs
cate2docs = {}
# TF值
TF = {}
with open(dataSrc, 'r') as f:
for line in f:
str_docIdx, str_wordIdx, str_cnt = line.split()
docIdx = int(str_docIdx)
wordIdx = int(str_wordIdx)
cnt = int(str_cnt)
# update 数据结构
doc2term.setdefault(docIdx, []).append(wordIdx)
term2doc.setdefault(wordIdx, []).append(docIdx)
TF.setdefault(docIdx, {})[wordIdx] = cnt
# 统计每个类别下有哪些文档
with open(labelSrc, 'r') as f:
for line_index, line in enumerate(f, 1):
labelVal = int(line.strip())
cate2docs.setdefault(labelVal, []).append(line_index)
return TF, doc2term, term2doc, cate2docs, label
# 特征选择
def featureSel(doc2term, term2doc, cate2docs):
# CHI衡量的是特征项ti和类别Cj之间的关联程度, A,B, C, D是四个统计量
CHI_cat2term = {}
# N:total number of documents
N = len(doc2term)
# A + B + C + D = N
# A: term出现在某类别中的文档总数
A = {}
# B: term出现在除某类别外的其他文档数
B = {}
# C: 该类别中不包含term的文档总数
C = {}
# D: 其他类别中不包含term的文档总数
D = {}
DF = {}
# 所有类别
categories = list(cate2docs.keys())
# 停用词词汇表
stopwords = {}
stopwordsSrc = r'stopwords.txt'
with open(stopwordsSrc) as f:
for line in f:
stopwords[line.strip()] = True
# 训练数据数据词汇表
vocSrc = r'vocabulary.txt'
voc = pd.read_table(vocSrc, names=['voc'])
# 保存所有的特征
features = set()
# 计算一个类别标签下各个词的CHI
for category in categories:
# 属于第category类的文档为docs
docs = cate2docs[category]
sumVal = 0
for term in term2doc:
# 如果是停用词, 则将CHI置零
if stopwords.get(voc['voc'][term - 1], False):
CHI_cat2term.setdefault(category, {})[term] = 0
continue
# 属于某类且包含term
AVal = len(set(term2doc[term]).intersection(set(docs)))
# 不属于某类但包含term
BVal = len(term2doc[term]) - AVal
# 属于某类,但不包含term
CVal = len(docs) - AVal
# 不属于某类, 不包含term
DVal = N - AVal - BVal - CVal
CHIVal = N * (AVal * DVal - CVal * BVal)**2 / ((AVal + CVal) * (BVal + DVal) * (AVal + BVal) * (CVal + DVal))
# CHIVal = math.log(AVal * N / ((AVal + CVal) * (AVal + BVal)))
A.setdefault((term, category), AVal)
B.setdefault((term, category), BVal)
C.setdefault((term, category), CVal)
D.setdefault((term, category), DVal)
CHI_cat2term.setdefault(category, {})[term] = CHIVal
DF[term] = AVal + BVal
sumVal += CHIVal
# 选出类别中CHI高于平均值的词
terms = CHI_cat2term[category]
meanVal = sumVal / len(terms)
for term in terms:
if CHI_cat2term[category][term] > meanVal:
features.add(term)
# for feature in features:
# print(voc['voc'][feature])
print('There are %d features in VSM model.\n' % len(features))
return features, DF
def buildSVMData(TF, DF, features, N, label, cate2docs, doc2terms):
isFeatures = dict(zip(features, [True] * len(features)))
categories = list(cate2docs.keys())
# 如果是训练样本, 则计算归一化缩放因子,并返回
# y: label值
y = [0] * N
# x: 稀疏矩阵
x = []
for i in range(N):
x.append({})
for category in categories:
for doc in cate2docs[category]:
# 给y进行标记类别
y[doc - 1] = label.iat[doc - 1, 0]
scale_factor = -100
for term in doc2terms[doc]:
if isFeatures.get(term, False): # 如果term是特征
# TF值
TFVal = TF[doc].get(term, 0)
# TF-IDF值
tf_idf = TFVal * math.log(N / DF[term])
x[doc - 1][term] = tf_idf
# 更新特征最大值
if scale_factor < tf_idf:
scale_factor = tf_idf
alpha = 0
# 按一篇文档中特征词最大的tf-idf, 对该文档中的所有特征词进行归一化
for term in doc2terms[doc]:
if isFeatures.get(term, False): # 如果term是特征
# x[doc - 1][term] = alpha + (1 - alpha) * x[doc - 1][term] / scale_factor
x[doc - 1][term] /= scale_factor
print("Data for SVM has been built.\n")
return x, y
# 计算DF
def getDF(doc2term, term2doc, cate2docs):
DF = {}
for term in term2doc:
DF[term] = len(term2doc[term])
return DF
if __name__ == '__main__':
start = time.time()
# # 主程序
TF, doc2term, term2doc, cate2docs, label = loadOriginData()
# 特征选择
features, DF = featureSel(doc2term, term2doc, cate2docs)
# 读取数据(train.data)
TF, doc2term, term2doc, cate2docs, label = loadOriginData()
# 特征选择
features, DF = featureSel(doc2term, term2doc, cate2docs)
# build SVM model
x, y = buildSVMData(TF, DF, features, len(doc2term), label, cate2docs, doc2term)
# 读取测试数据(test.data)
TF_test, doc2term_test, term2doc_test, cate2docs_test, label_test = loadOriginData(src='test')
DF_test = getDF(doc2term_test, term2doc_test, cate2docs_test)
# TF, DF, features, len(doc2term), label, cate2docs, doc2term, scales)
x_test, y_test = buildSVMData(TF_test, DF_test, features, len(doc2term_test), label_test, cate2docs_test, doc2term_test)
print("处理数据使用了 %s s时间。\n" % (time.time() - start))
# # 调用 liblinear 库进行分类
prob = problem(y, x)
param = parameter('-s 0 -c 4 -B 1')
# 训练
m = train(prob, param)
# 预测test.data
p_label, p_acc, p_vals = predict(y_test, x_test, m, '-b 1')
# 评价
ACC, MSE, SCC = evaluations(y_test, p_label)
print('ACC:\n', ACC)
print('MSE', MSE)
print('SCC', SCC)
# 统计每类中错误率
categoriesErrs = {}
for doc_index, doc_label in enumerate(y_test):
if doc_label != int(p_label[doc_index]):
cateogory = label_test.iat[doc_index, 0]
categoriesErrs.setdefault(cateogory, []).append(doc_index + 1)
# with open('outcome.txt', 'wb') as f:
print("错误分类的样本为:\n")
for categoryErr in categoriesErrs:
numOfErr = len(categoriesErrs[categoryErr])
print('第%d类共 %d样本, 被错分的个数为 %d, 比例为 %f %%.\n' % (categoryErr,len(cate2docs_test[categoryErr]), numOfErr, numOfErr/len(cate2docs_test[categoryErr])))
end = time.time()
print("Total time cost is %s s.\n" % (end - start))
Python-基于向量机SVM的文本分类的更多相关文章
- 基于Text-CNN模型的中文文本分类实战 流川枫 发表于AI星球订阅
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于T ...
- 基于Text-CNN模型的中文文本分类实战
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于T ...
- Chinese-Text-Classification,用卷积神经网络基于 Tensorflow 实现的中文文本分类。
用卷积神经网络基于 Tensorflow 实现的中文文本分类 项目地址: https://github.com/fendouai/Chinese-Text-Classification 欢迎提问:ht ...
- 机器学习实战笔记(Python实现)-05-支持向量机(SVM)
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
- class-支持向量机SVM全析笔记
support vector machines,SVM是二类分类模型.定义在特征空间上间隔最大的线性分类器,由于包括核技巧实质上成为非线性分类器.学习策略是间隔最大化,可形式化为求解凸二次规划问题(c ...
- 走过路过不要错过 包你一文看懂支撑向量机SVM
假设我们要判断一个人是否得癌症,比如下图:红色得癌症,蓝色不得. 看一下上图,要把红色的点和蓝色的点分开,可以画出无数条直线.上图里黄色的分割更好还是绿色的分割更好呢?直觉上一看,就是绿色的线更好.对 ...
- 基于Naive Bayes算法的文本分类
理论 什么是朴素贝叶斯算法? 朴素贝叶斯分类器是一种基于贝叶斯定理的弱分类器,所有朴素贝叶斯分类器都假定样本每个特征与其他特征都不相关.举个例子,如果一种水果其具有红,圆,直径大概3英寸等特征,该水果 ...
- 8.支撑向量机SVM
1.什么是SVM 下面我们就来介绍一些SVM(Support Vector Machine),首先什么是SVM,它是做什么的?SVM,中文名是支撑向量机,既可以解决分类问题,也可以解决回归问题,我们来 ...
- 模式识别笔记3-支持向量机SVM
1. 线性SVM 对两类点的划分问题,这里对比下逻辑回归和SVM的区别: 逻辑回归的思想是,将所有点到决策平面的距离作为损失来进行训练,目标是到决策平面的距离和最小 SVM的思想是,只关注支持向量(图 ...
随机推荐
- Linux 设置服务开机启动
首先来了解一下 service命令是Redhat Linux兼容的发行版中用来控制系统服务的实用工具,它以启动.停止.重新启动和关闭系统服务,还可以显示所有系统服务的当前状态. service +(自 ...
- Unity Editor已停止工作
在更换系统之后,可能会出现打开刚安装好的Unity,显示Unity Editor已停止工作,这时候我们考虑是系统win7的问题.可以在原系统上升级,也可以重新安装,升级.文中所涉及到的软件,可在右侧加 ...
- CopyOnWriteArrayList笔记
CopyOnWriteArrayList笔记 一.前言 Java 5.0 在java.util.concurrent 包中提供了多种并发容器类来改进同步容器的性能. ConcurrentHashMap ...
- 【朝花夕拾】Handler篇(二)
前言 一年前写过一篇文章[朝花夕拾]Handler篇,随着这一年来对Handler更多的认识和理解,本文对Handler知识点做的一些补充. 一.为什么要引入Handler Handler的主要作用是 ...
- Django之使用中间件解决前后端同源策略问题
问题描述 前端时间在公司的时候,要使用angular开发一个网站,因为angular很适合前后端分离,所以就做了一个简单的图书管理系统来模拟前后端分离. 但是在开发过程中遇见了同源策略的跨域问题,页面 ...
- 基于Taro与Typescript开发的网易云音乐小程序
基于Taro与网易云音乐api开发,技术栈主要是:typescript+taro+taro-ui+redux,目前主要是着重小程序端的展示,主要也是借此项目强化下上述几个技术栈的使用,通过这个项目也可 ...
- 深度解密Go语言之 scheduler
目录 前置知识 os scheduler 线程切换 函数调用过程分析 goroutine 是怎么工作的 什么是 goroutine goroutine 和 thread 的区别 M:N 模型 什么是 ...
- spring-cloud-kubernetes背后的三个关键知识点
在<你好spring-cloud-kubernetes>一文中,对spring-cloud-kubernetes这个SpringCloud官方kubernetes服务框架有了基本了解,今天 ...
- H5调用相机和相册更换头像
需求:H5调用手机的相机和相册从而实现更换头像的功能 这个功能是很常用的一个功能,因此做一个记录. 1.在头像img下加一个文件输入框 <input type="file" ...
- POJ 2488 A Knight's Journey (DFS)
poj-2488 题意:一个人要走遍一个不大于8*8的国际棋盘,他只能走日字,要输出一条字典序最小的路径 题解: (1)题目上说的"The knight can start and end ...