【XSY2344】K-th String
Description
Alice有 n(n≤26) 张牌,牌上分别标有前 n 个英文小写字母。例如,如果 n=3 ,则Alice有3张牌,分别标有"a", "b", "c" 。Alice可以通过排列这些卡牌来构造字符串 t 。考虑字符串 t 的所有子串(共 n(n+1)2 个),按照字典序从小到大排名第 k 的子串为 s 。现在,给你正整数 n,k 和字符串 s ,问有多少种可能的字符串 t 。将答案对 109+7 取模。
例如: 当 n=3,t="cab" 时,排序后的子串为"a", "ab", "b", "ca", "cab", "cab",排名第3的子串为"b"。当 n=3,k=3,s="b" 时 ,则 t 可能为"cab"或"bac" ,故答案为2种。
Input
第一行两个整数 \(n,k(1≤n≤26,1≤k≤n(n+1)/2)\) 。
第二行一个字符串 s ,s 中仅包含前 n 个字母,且 s 中的字母两两不同。
Output
输出一行表示答案。将答案对 109+7 取模。
Sample Input
3 3
b
Sample Output
2
HINT
数据范围与约定
对于30%的数据, \(1≤n≤8\)
对于所有数据, \(1≤n≤26\)
想象一下DP
我们先枚举s串
\(dp[i][j][k][l]\)表示前\(i\)个字母中,有\(j\)个比\(s[1]\)小,他们对答案的贡献为\(k\)(添加这个节点后会有多少个新的小于\(s[1]\)的串),\(l=0或1\),表示现在所取的子串中,有没有s这个串的方案数。
三种情况状态转移:
1.不取\(i\)这个点: dp[i+1][j][kk][l]=dp[i+1][j][kk][l]+dp[i][j][kk][l]
2.取\(i\)这个点:
一个点的贡献就是包含这个点在内,剩余子串的长度。
dp[i+1][j+1][kk+n-i][l]=dp[i+1][j+1][kk+n-i][l]+dp[i][j][kk][l]
3.直接取整个s串(前提:之前没取过s):
直接取s串的贡献就是对s串中的每一个点都求贡献
if(i+len<=n&&!l)
{
dp[i+len][j][kk+(n-i)*sum1-sum][1]=(dp[i+len][j][kk+(n-i)*sum1-sum][1]+dp[i][j][kk][l])%mod;
}
最后统计答案:
因为在s串之前的字母的每一种排列都符合要求,所以答案要乘上排列的情况数。
s串之后的字母同理。
代码:
#include<bits/stdc++.h>
#define mod 1000000007
using namespace std;
int n,k,dp[27][27][3050][2],sum,sum1;
char ch[27];
int main()
{
scanf("%d%d%s",&n,&k,ch+1);
int len=strlen(ch+1);
k-=len;
if(k<0)
{
puts("0");
return 0;
}
int num=ch[1]-'a'+1;
for(int i=1;i<=len;i++)
{
if(ch[i]<=ch[1])
{
num--;
if(ch[i]!=ch[1])
{
sum=sum+i-1;
sum1++;//在s串之内的小于s[1]的字母的个数
}
}
}
dp[0][0][0][0]=1;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
for(int kk=0;kk<=n*(n+1)/2;kk++)
{
for(int l=0;l<=1;l++)
{
dp[i+1][j][kk][l]=(dp[i+1][j][kk][l]+dp[i][j][kk][l])%mod;//不取
dp[i+1][j+1][kk+n-i][l]=(dp[i+1][j+1][kk+n-i][l]+dp[i][j][kk][l])%mod;//取
if(i+len<=n&&!l)
{
dp[i+len][j][kk+(n-i)*sum1-sum][1]=(dp[i+len][j][kk+(n-i)*sum1-sum][1]+dp[i][j][kk][l])%mod;//整个s串
}
}
}
}
}
long long ans=dp[n][num][k][1];//答案的一种
for(int i=1;i<=num;i++)//乘上头和尾的排列数
{
ans=(ans*i)%mod;
}
for(int i=1;i<=n-num-len;i++)
{
ans=(ans*i)%mod;
}
printf("%lld\n",ans);
return 0;
}
【XSY2344】K-th String的更多相关文章
- 【CF1132F】Clear the String(动态规划)
[CF1132F]Clear the String(动态规划) 题面 CF 题解 考虑区间\(dp\). 增量考虑,每次考虑最后一个字符和谁一起删去,然后直接转移就行了. #include<io ...
- 【HDU5421】Victor and String(回文树)
[HDU5421]Victor and String(回文树) 题面 Vjudge 大意: 你需要支持以下操作: 动态在前端插入一个字符 动态在后端插入一个字符 回答当前本质不同的回文串个数 回答当前 ...
- 【CF954I】Yet Another String Matching Problem(FFT)
[CF954I]Yet Another String Matching Problem(FFT) 题面 给定两个字符串\(S,T\) 求\(S\)所有长度为\(|T|\)的子串与\(T\)的距离 两个 ...
- 【LeetCode】880. Decoded String at Index 解题报告(Python)
[LeetCode]880. Decoded String at Index 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博 ...
- 【BZOJ3110】K大数查询(整体二分)
[BZOJ3110]K大数查询(整体二分) 题面 BZOJ 题解 看了很久整体二分 一直不知道哪里写错了 ... 又把树状数组当成线段树区间加法来用了.. 整体二分还是要想清楚在干什么: 我们考虑第\ ...
- 【CF1133E】K Balanced Teams(动态规划,单调队列)
[CF1133E]K Balanced Teams(动态规划,单调队列) 题面 CF 让你把一堆数选一些出来分成不超过\(K\)组,每一组里面的最大值和最小值之差不超过\(5\),求最多有多少个人元素 ...
- 【Hihocoder1413】Rikka with String(后缀自动机)
[Hihocoder1413]Rikka with String(后缀自动机) 题面 Hihocoder 给定一个小写字母串,回答分别把每个位置上的字符替换为'#'后的本质不同的子串数. 题解 首先横 ...
- 【CF886D】Restoration of string 乱搞
[CF886D]Restoration of string 题意:对于给定的一个母串,定义一个字符串是出现频率最多的,当且仅当它在母串中出现的次数最多(可以有多个出现次数最多的,出现的位置可以重叠). ...
- 【BZOJ4520】K远点对(KD-Tree)
[BZOJ4520]K远点对(KD-Tree) 题面 BZOJ 洛谷 题解 考虑暴力. 维护一个大小为\(K\)的小根堆,然后每次把两个点之间的距离插进去,然后弹出堆顶 这样子可以用\(KD-Tree ...
- 【BZOJ4504】K个串 可持久化线段树+堆
[BZOJ4504]K个串 Description 兔子们在玩k个串的游戏.首先,它们拿出了一个长度为n的数字序列,选出其中的一个连续子串,然后统计其子串中所有数字之和(注意这里重复出现的数字只被统计 ...
随机推荐
- VR应用评测 - Apollo 11 阿波罗11号
Apollo 11 VR http://store.steampowered.com/app/457860/Apollo_11_VR/ Steam VR 2016年发布 好评率 50% 基于美国航空航 ...
- Nginx负载均衡配置实例
面对高并发的问题,企业往往会从两个方面来解决.其一,从硬件上面,提升硬件的配置,增加服务器的性能:另外,就是从软件上,将数据库和WEB服务器分离,使数据库和WEB服务器都能够充分发挥各自的性能,并且二 ...
- Kafka 学习笔记之 High Level Consumer相关参数
High Level Consumer相关参数 自动管理offset auto.commit.enable = true auto.commit.interval.ms = 60*1000 手动管理o ...
- 『开发技术』Ubuntu与Windows如何查看CPU&GPU&内存占用量
0 序·简介 在使用Ubuntu或者Windows执行一些复杂数据运算时,需要关注下CPU.GPU以及内存占用量,如果数据运算超出了负荷,会产生难以预测的错误.本文将演示如何用简单地方式,实时监控Ub ...
- php数字函数
is_numeric() 检查变量是否包含一个合法数字 round() 取整数,四舍五入 round(数字, 小数位) ceil() 向上取整 floor() 向下取整 range() 生成范围 ...
- Java如何安装JDK,配置环境变量。超级详细图及操作
突然想起自己大学刚接触java的时候,要下载JDK和配置环境变量,那时候我上网找了很多教学,结果发现很多的博主都是表达不太清晰,或者是我理解能力差点,导致我那时候搞了一个多小时才搞定,而且事后每次我重 ...
- vue3.0 vue.config.js 配置实战
今天讲述一下vue-config.js配置,我们前面搭建好脚手架会发现,这个对比2.x版本少了很多东西,没有build的配置,也没有webpack的配置,那么问题来了,我们如何去开发我们的项目呢,比如 ...
- vodevs3031 最富有的人
在你的面前有n堆金子,你只能取走其中的两堆,且总价值为这两堆金子的xor值,你想成为最富有的人,你就要有所选择. 输入描述 Input Description 第一行包含两个正整数n,表示有n堆金子. ...
- GUI tkinter (Menu)菜单项篇
"""添加顶层菜单:1.我们可以使用Menu类来新建一个菜单,Menu和其他的组件一样,第一个是parent,这里通常可以为窗口2.然后我们可以用add_command方 ...
- 【css】CSS设置文字不能被选中
CSS设置文字不能被选中 /*设置文字不能被选中 以下为css样式*/ -webkit-user-select:none; -moz-user-select:none; -ms-user-select ...