题文:

You are given the task to design a lighting system for a huge conference hall. After doing a lot of calculation and sketching, you have figured out the requirements for an energy-efficient design that can properly illuminate the entire hall. According to your design, you need lamps of n different power ratings. For some strange current regulation method, all the lamps need to be fed with the same amount of current. So, each category of lamp has a corresponding voltage rating. Now, you know the number of lamps and cost of every single unit of lamp for each category. But the problem is, you are to buy equivalent voltage sources for all the lamp categories. You can buy a single voltage source for each category (Each source is capable of supplying to infinite number of lamps of its voltage rating.) and complete the design. But the accounts section of your company soon figures out that they might be able to reduce the total system cost by eliminating some of the voltage sources and replacing the lamps of that category with higher rating lamps. Certainly you can never replace a lamp by a lower rating lamp as some portion of the hall might not be illuminated then. You are more concerned about money-saving than energy-saving. Find the minimum possible cost to design the system.

Input Each case in the input begins with n (1 ≤ n ≤ 1000), denoting the number of categories. Each of the following n lines describes a category. A category is described by 4 integers - V (1 ≤ V ≤ 132000), the voltage rating, K (1 ≤ K ≤ 1000), the cost of a voltage source of this rating, C (1 ≤ C ≤ 10), the cost of a lamp of this rating and L (1 ≤ L ≤ 100), the number of lamps required in this category. The input terminates with a test case where n = 0. This case should not be processed.

Output For each test case, print the minimum possible cost to design the system.

Sample Input

3

100 500 10 20

120 600 8 16

220 400 7 18

0

Sample Output

778

题解:

  又是一道十分巧妙的题目,首先很容易发现对于某种灯泡,要么全换,要么不换。因为如果要换,要么是灯泡比被换的更好,要么是整体更好,所以两种情况显然全部换才更优,才能省下电源钱。其二,对于这个题目,有个非常妙的性质——要换就是换连续的一个区间。因为如果不是一个区间,而是中间有某个灯泡断开了这个区间。就说明中间的使其断开的灯泡比当前更新的灯泡更优,那么为什么不能用断开的灯泡去更新前面的呢?

  所以就有了转移dp[i]=min(dp[i],dp[j]+(sum[i]-sum[j])*a[i].c+a[i].k);dp[i]表示前i个的最小花费,就是说j之前用最优方案,j之后都用i号灯泡来更新。的确,贪心加dp,十分巧妙。

代码:

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<cstring>
#include<stdlib.h>
#define ll long long
#define MAXN 1010
using namespace std;
struct light{
int v,k,c,l;
}a[MAXN]; bool cmp(light x,light y){
return x.v<y.v;
} int dp[MAXN],sum[MAXN];
int main(){
while(){
int n;scanf("%d",&n);
if(!n) break;
memset(dp,,sizeof(dp));
memset(sum,,sizeof(sum));
for(int i=;i<=n;i++){
cin>>a[i].v>>a[i].k>>a[i].c>>a[i].l;
}
dp[]=;
sort(a+,a+n+,cmp);
for(int i=;i<=n;i++) sum[i]=sum[i-]+a[i].l;
for(int i=;i<=n;i++){
for(int j=i-;j>=;j--){
dp[i]=min(dp[i],dp[j]+(sum[i]-sum[j])*a[i].c+a[i].k);
}
}
printf("%d\n",dp[n]);
}
}

UVA - 11400 Lighting System Design的更多相关文章

  1. 【Uva 11400】Lighting System Design

    [Link]: [Description] 你要构建一个供电系统; 给你n种灯泡来构建这么一个系统; 每种灯泡有4个参数 1.灯泡的工作电压 2.灯泡的所需的电源的花费(只要买一个电源就能供这种灯泡的 ...

  2. 【线性结构上的动态规划】UVa 11400 - Lighting System Design

    Problem F Lighting System Design Input: Standard Input Output: Standard Output You are given the tas ...

  3. UVa 11400 Lighting System Design(DP 照明设计)

    意甲冠军  地方照明系统设计  总共需要n不同类型的灯泡  然后进入 每个灯电压v  相应电压电源的价格k  每一个灯泡的价格c   须要这样的灯泡的数量l   电压低的灯泡能够用电压高的灯泡替换   ...

  4. (动态规划)UVA-11400:Lighting System Design

    You are given the task to design a lighting system for a huge conference hall. After doing a lot of ...

  5. UVA11400 Lighting System Design(DP)

    You are given the task to design a lighting system for a huge conference hall. After doing a lot of ...

  6. uva 11400 Problem F Lighting System Design

    紫皮书题: 题意:让你设计照明系统,给你n种灯泡,每种灯泡有所需电压,电源,每个灯泡的费用,以及每个灯泡所需的数量.每种灯泡所需的电源都是不同的,其中电压大的灯泡可以替换电压小的灯泡,要求求出最小费用 ...

  7. UVA - 11400 Lighting System Design (区间DP)

    这个问题有两个点需要注意: 1. 对于一种灯泡,要么全换,要么全不换. 证明: 设一种灯泡单价为p1,电池价格为k1,共需要L个,若把L1个灯泡换成单价为p2,电池为k2的灯泡,产生的总花费为p1*L ...

  8. UVa 11400 - Lighting System Design(线性DP)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. UVA 11400"Lighting System Design"

    传送门 错误思路 正解 AC代码 参考资料: [1]:https://www.cnblogs.com/Kiraa/p/5510757.html 题意: 现给你一套照明系统,这套照明系统共包含 n 种类 ...

随机推荐

  1. 【Nginx】基于Consul+Upsync+Nginx实现动态负载均衡

    一.Http动态负载均衡 什么是动态负载均衡 动态负载均衡实现方案 常用服务器注册与发现框架 二.Consul快速入门 Consul环境搭建 三.nginx-upsync-module nginx-u ...

  2. 【Offer】[19] 【字符串匹配】

    题目描述 思路分析 测试用例 Java代码 代码链接 题目描述 请实现一个函数用来匹配包括'.'和'*'的正则表达式. 模式中的字符'.'表示任意一个字符,而'*'表示它前面的字符可以出现任意次(包含 ...

  3. SpringCloud学习笔记(1):Eureka注册中心

    简介 Eureka是Netflix开源的基于rest的服务治理方案,分为Server端和Client端,Server端为注册中心,其他微服务通过Client端连接Server端进行服务的注册和发现. ...

  4. 049 模块6-wordcloud库的使用

    目录 一.wordcloud库基本介绍 1.1 wordcloud库概述 1.2 wordcloud库的安装 二.wordcloud库使用说明 2.1 wordcloud库基本使用 2.2 wordc ...

  5. Nginx安装及详解

    Nginx简介: Nginx(发音engine x)专为性能优化而开发的开源软件,是HTTP.反向代理.邮件代理.TCP/UDP协议代理软件,由俄罗斯的作者Igor Sysoev开发,其最知名的优点是 ...

  6. BMP 图像信息隐藏及检测

    原理简介 针对文件结构的信息隐藏方法需详细掌握文件的格式,利用文件结构块之间的关系或根据块数据和块大小之间的关系来隐藏信息. BMP(Bitmap-File)图形文件是 Windows 采用的常见图形 ...

  7. Jmeter介绍和安装

    Apache JMeter™应用开源软件,100%纯Java应用程序,设计用于负载功能测试和性能测试.它最初是为测试Web应用程序而设计的,但后来扩展到其他测试函数中. 安装步骤:1.安装JDK 8版 ...

  8. Nginx正确配置Location

    文章原创于公众号:程序猿周先森.本平台不定时更新,喜欢我的文章,欢迎关注我的微信公众号. 之前已经讲过Nginx的基本配置,本篇文章主要对Nginx中Location指令的作用进行介绍.本篇文章主要对 ...

  9. linux 操作系统级别监控 free命令

    free命令可以查看当前系统内存的使用情况 free -m 以MB为单位 free -k 以KB为单位 free -m 以MB为单位显示系统内存的使用情况,同理,也可以使用-k.-g等其他的单位显示 ...

  10. 04: OpenGL ES 基础教程03 纹理

    前言 1:常用类: 1:纹理的作用 正文 一:常用类 上下文 顶点数据缓存 着色器 baseEffect 一:纹理 1.1:   纹理可以控制渲染的每个像素的颜色. 1.2: 纹素:与像素一样,保存每 ...