zstu 4237 马里奥的求救——(单调队列DP)
题目链接:http://oj.acm.zstu.edu.cn/JudgeOnline/problem.php?id=4237
这题可以转化为每次可以走g~d+x步,求最大分数,且最大分数的步数最少。
这题的数据范围比较小,可以用奇怪的姿势过。
首先,lyf队长给的方法是n^3的dp过;用我自己的方法是搜索也可以过,因为数据小。
但是,如果数据范围很大,就得用复杂度是O(n)的单调队列dp来做。
上次做过一道单调队列的dp问题,当时比较懵懂,现在,对这个方法有了更深的理解。而且,只要把id丢进单调队列里即可(因为可以通过id查找dp的值)。具体过程还是看代码仔细理解吧:
#include <stdio.h>
#include <algorithm>
#include <queue>
#include <set>
using namespace std;
typedef pair<int,int> pii; const int inf =0x3f3f3f3f;
int n,x,g,d;
int a[+];
pii dp[+]; pii solve()
{
deque<int> Q;
dp[]=pii(,);
for(int i=;i<=n;i++)
{
while(!Q.empty() && Q.front()<i-d) Q.pop_front();
if(i-g>= && dp[i-g].first != -inf)
{
while(!Q.empty() && dp[Q.back()] <= dp[i-g]) Q.pop_back();
Q.push_back(i-g);
}
if(!Q.empty()) dp[i] = pii(dp[Q.front()].first + a[i],dp[Q.front()].second - );
//因为题目要求最大分数的最小步数,而对pair的max是默认取大的值,
//所以取个反就是最大化(-步数)
else dp[i] = pii(-inf,);
}
pii ret = pii(-inf,);
for(int i=;i<=n;i++)
{
if(i>=n-d+) ret=max(ret,dp[i]);
//如果处于再跳一步就可以出去的状态的话
}
ret.second = -ret.second + ;
//加1是细节,因为还需要一步跳出
return ret;
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d%d",&n,&x,&g,&d);
d += x;
for(int i=;i<=n;i++) scanf("%d",a+i);
pii ans = solve();
printf("%d %d\n",ans.first,ans.second);
}
return ;
}
同时,因为pair的比较方法,这里必须把步数转换成负数的。如果不这样就必须写比较器:
bool operator < (const std::pair<int,int> &a,const std::pair<int,int> &b) {
if (a.first != b.first) return a.first < b.first;
return a.second > b.second;
}
bool operator <= (const std::pair<int,int> &a,const std::pair<int,int> &b) {
return a == b || a < b;
}
也可以用写cmp的方式,像sort一样传入第三个参数cmp,同时把dp[Q.back()] <= dp[i-g]改成(max(dp[Q.back()],dp[i-g],cmp) == dp[i-g]) 就行,但是不如上面那样写比较器来的逻辑清晰。
同时,这题有个奇怪的地方在于,重载了以后max还是会出错,必须 if (ret < dp[i]) ret = dp[i];来代替max才行。但是,自己试验了别的代码以后发现,重载了以后max函数是可以生效的,这里真是有毒啊。还是”留坑以后填“吧。。
zstu 4237 马里奥的求救——(单调队列DP)的更多相关文章
- POJ 3017 单调队列dp
Cut the Sequence Time Limit: 2000MS Memory Limit: 131072K Total Submissions: 8764 Accepted: 2576 ...
- [TyvjP1313] [NOIP2010初赛]烽火传递(单调队列 + DP)
传送门 就是个单调队列+DP嘛. ——代码 #include <cstdio> ; , t = , ans = ~( << ); int q[MAXN], a[MAXN], f ...
- 1304F2 - Animal Observation (hard version) 线段树or单调队列 +DP
1304F2 - Animal Observation (hard version) 线段树or单调队列 +DP 题意 用摄像机观察动物,有两个摄像机,一个可以放在奇数天,一个可以放在偶数天.摄像机在 ...
- vijos P1243 生产产品(单调队列+DP)
P1243生产产品 描述 在经过一段时间的经营后,dd_engi的OI商店不满足于从别的供货商那里购买产 品放上货架,而要开始自己生产产品了!产品的生产需要M个步骤,每一个步骤都可以在N台机器 ...
- POJ 1821 单调队列+dp
题目大意:有K个工人,有n个墙,现在要给墙涂色.然后每个工人坐在Si上,他能刷的最大范围是Li,且必须是一个连续子区间,而且必须过Si,他刷完后能获得Pi钱 思路:定义dp[i][j]表示前i个人,涂 ...
- codeforces 1077F2. Pictures with Kittens (hard version)单调队列+dp
被队友催着上(xun)分(lian),div3挑战一场蓝,大号给基佬紫了,结果从D开始他开始疯狂教我做人??表演如何AKdiv3???? 比赛场上:A 2 分钟,B题蜜汁乱计数,结果想得绕进去了20多 ...
- 【LOJ#10180】烽火传递 单调队列+dp
题目大意:给定一个 N 个非负整数数组成的序列,每个点有一个贡献值,现选出其中若干数,使得每连续的 K 个数中至少有一个数被选,要求选出的数贡献值最小. 题解:设 \(dp[i]\) 表示考虑了序列前 ...
- BZOJ 5281--[Usaco2018 Open]Talent Show(分数规划&单调队列&DP)
5281: [Usaco2018 Open]Talent Show Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 79 Solved: 58[Sub ...
- 【CF1077F2】Pictures with Kittens 单调队列+dp
题目大意:给定一个长度为 N 的序列,点有点权,从序列中选出恰好 X 个数,并且保证任意连续的 K 个数中均有一个被选中,求选出的点权最大是多少. 题解:此题可以作为 烽火传递+ 来处理,只不过在烽火 ...
随机推荐
- 搭建Leanote网络云笔记
下载启动 MongoDB Leanote 依赖 MongoDB 作为数据存储,下面开始安装 MongoDB: 下载 MongoDB 进入 /home 目录,并下载 MongoDB: cd /home ...
- @Html.ActionLink方法
Html.ActionLink:MVC提供的自动构造重写地址的方法,该方法有五个重载 1.Html.ActionLink("linkText","actionName&q ...
- jQuery Validation ,调用valid方法时,不验证remote
1.问题描述 model代码如下: remote对应的action如下: view代码如下: 单击按钮时,执行如下动作 当点击按钮时,我们发现,虽然后台action验证失败,但 还是执行返回true, ...
- iview表单验证数字
验证输入字符串必须为数字 html: <FormItem label="兑换积分:" prop="exchangeIntegral"> <In ...
- YOLO 学习之路
参考自官网 https://pjreddie.com/darknet/install/ 1. 下载darknet 并编译 git clone https://github.com/pjreddie ...
- Spring注解实践
原文:http://blog.csdn.net/xyh820/article/details/7303330 概述 注释配置相对于 XML 配置具有很多的优势: 它可以充分利用 Java 的反射机制获 ...
- Python 针对Excel操作
1.python 读取Excel # -*- coding: utf-8 -*- import xlrd import os,sys reload(sys) sys.setdefaultencodin ...
- VUE【三、指令】
模板指令 1.数据渲染(对应data数据) {{a}} 当使用v-once指令时,数据会一次绑定,后续修改值不会变化 v-text="a" 等同于{{a}} v-html=&quo ...
- ELK 错误: retrying failed action with response code: 403, kibana无log显示
今天10点时候同事报出kibana突然不显示log了,开始紧急排查 1. 从数据源头查起,先看被filebeat监视的log文件是否在更新(一般只要log对应服务在正常运行,log文件中就会有数据持续 ...
- Computer Vision_1_Active Appearance Models:Active Appearance Models——2001
此为计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面. 1. Active Appearance Models 活动表观模型和活动轮廓模型基本思想来源 Snake,现在 ...