Tracking of Features and Edges
Joint Tracking of Features and Edges
1. LK光流
基本LK光流
运动假设:
\]
一阶近似得到:
\]
由于Aperture problem
,需要假设领域像素运动相同,并作为约束,便可以求解
\]
2. Horn-Schunck光流
\]
\(\lambda\)为正则项参数,相当于加了个平滑约束.
\(\nabla ^2u, \nabla ^2v\) 为\(u,v\)的拉普拉斯算子,可以近似为:
\]
领域\(u\)的均值来表示.
3. Joint Tracking
\]
E_S(i) = ((u_i-\hat{u}_i)^2+(v_i-\hat{v}_i)^2)
\]
\((\hat{u}_i,\hat{v}_i)^T\) 为期望的偏移量,可以通过任何一种方式获取.
Instead, we predict the motion displacement of a pixel by fitting an affine motion model
to the displacements of the surrounding features, which are inversely weighted according to their distance to the pixel.
We use a Gaussian weighting function on the distance, with σ = 10 pixels.
对于周围的特征拟合一个Affine变换来获取?
利用特征周围的特征点求解一个预测值:
- 直接利用领域内\((u,v)\)的平均值
特征选择:
\]
本文取: \(\eta=0.1\)
4. Unified Point-Edgelet Feature tracking
- 进一步优化,选取
Edgelet
而不是边缘的点作为track的目标 - 预测的\((\hat{u},\hat{v})\)不是平均值,而是拟合一个Affine变换获得(u,v),并且拟合变换的权重根据距离和scale进行计算
5. \(u,v\)预测值如何计算
利用领域特征的\(u,v\)取加权来进行计算获得
6. 接下来工作
这些方法的思路都是利用点和边缘来互补操作,使得二者能够互相提升各自的缺陷,接下来基本参考joint_tracking的思路,但是不取平均值,而是进行加权操作,简单尝试.
7. 参考文献
- Birchfield S T , Pundlik S J . Joint tracking of features and edges
CVPR 2008
- Sundararajan K . Unified point-edgelet feature tracking[J]. Dissertations & Theses - Gradworks, 2011.
Tracking of Features and Edges的更多相关文章
- 深度学习Deep learning
In the last chapter we learned that deep neural networks are often much harder to train than shallow ...
- (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2
Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...
- Computer Vision Algorithm Implementations
Participate in Reproducible Research General Image Processing OpenCV (C/C++ code, BSD lic) Image man ...
- (zhuan) Notes on Representation Learning
this blog from: https://opendatascience.com/blog/notes-on-representation-learning-1/ Notes on Repr ...
- A successful Git branching model——经典篇
A successful Git branching model In this post I present the development model that I’ve introduced f ...
- 图像中的artifacts
artifacts 瑕疵 伪影(Artifacts) 伪影(Artifacts)-CT-基础术语 - 影像园 http://www.xctmr.com/baike/ct/c34b5413e305b45 ...
- 神奇的 ViewDragHelper,让你轻松定制拥有拖拽能力的 ViewGroup
为了吸引大家的注意力,先给大家看一张动图: 相信这种效果大家都见过吧?我第一次见到这样的效果时,心里也痒痒的,急于想实现这种功能,后来因为拖延症的问题,就一直没有去弄这件事.现在这段时间,工作比较轻闲 ...
- Convolution Fundamental I
Convolution Fundamental I Foundations of CNNs Learning to implement the foundational layers of CNN's ...
- [C6] Andrew Ng - Convolutional Neural Networks
About this Course This course will teach you how to build convolutional neural networks and apply it ...
随机推荐
- 检测 gcc 是否支持 C99 标准的方法
一般来说 gcc 3.0 以上都是支持 C99 的 但是编译的时候得加上 -std=c99 检测 gcc 是否支持 C99 方法,新建 c99.c 文件,内容如下 #include <stdio ...
- 数字pid笔记(2)
void pid_Cal(void) { //float index = 0; IncPid * p = NULL; p = &g_PID_Inc; p->SetVal = sys_pa ...
- c++对c的扩展----引用类型
变量是一个内存的别名,程序通过变量名使用内存空间,当然一个内存空间可以起多个别名么? 答案:可以,这就是c++中引用的由来,引用就是给变量起别名 引用是c++的概念!!!况且声明引用的符号&十 ...
- 洛谷P2114 起床困难综合症【位运算】【贪心】
题目:https://www.luogu.org/problemnew/show/P2114 题意:有n个操作,每个可以是与.或.异或 一个数. 初始值是0~m之间的一个数,问经过n个运算之后,可以得 ...
- 6、Spring Boot 2.x 集成 MyBatis
1.6 Spring Boot 2.x 集成 MyBatis 简介 详细介绍如何在Spring Boot中整合MyBatis,并通过注解方式实现映射. 完整源码: 1.6.1 创建 spring-bo ...
- 时间戳、String、Date转换
时间戳(String or long) =>Date long s=1557230621043L; Date date=new Date(s); System.out.println(date) ...
- 014_STM32程序移植之_L298N电机驱动模块
更改注意: STM32程序移植之L298N电机驱动模块 引脚连接图 STM32引脚 L298N引脚 功能 PA6 ENA 马达A的PWM PA7 ENB 马达B的PWM PA2 IN1 控制马达A P ...
- chrome扩展开发实战入门之一-hellocrx
后记:在写这篇文章时,我还没搞懂chrome扩展的基本原理.后来才明白,最简单(且实用)的扩展只需要manifest.json和content_scripts.js两个文件,无需background. ...
- 参数类型 (@Test层)常用参数
long lNum = 1234L; float fNum = 1.23f; double dNum = 1.23d;
- Windows Storage 驱动开发 葵花宝典 - 翻译
Roadmap for Developing Windows Storage Drivers Last Updated: 4/20/2017 To create a storage driver, ...