描述

【简化版题意】给定一棵N个节点的树,要求增加若干条边,把这棵树扩充为完全图,并满足图的唯一最小生成树仍然是这棵树。求增加的边的权值总和最小是多少。

我们一共有N个OIER打算参加这个泼水节,同时很凑巧的是正好有N个水龙头(至于为什么,我不解释)。N个水龙头之间正好有N-1条小道,并且每个水龙头都可以经过小道到达其他水龙头(这是一棵树,你应该懂的..)。但是OIER门为了迎接中中的挑战,决定修建一些个道路(至于怎么修,秘密~),使得每个水龙头到每个水龙头之间都有一条直接的道路连接(也就是构成一个完全图呗~)。但是OIER门很懒得,并且记性也不好,他们只会去走那N-1条小道,并且希望所有水龙头之间修建的道路,都要大于两个水龙头之前连接的所有小道(小道当然要是最短的了)。所以神COW们,帮那些OIER们计算一下吧,修建的那些道路总长度最短是多少,毕竟修建道路是要破费的~~

输入格式

本题为多组数据~
 第一行t,表示有t组测试数据
 对于每组数据
 第一行N,表示水龙头的个数(当然也是OIER的个数);
 2到N行,每行三个整数X,Y,Z;表示水龙头X和水龙头Y有一条长度为Z的小道

输出格式

对于每组数据,输出一个整数,表示修建的所有道路总长度的最短值。

样例输入

2
3
1 2 2
1 3 3
4
1 2 3
2 3 4
3 4 5 

样例输出

4
17 

数据范围与约定

  • 每个测试点最多10组测试数据
     50% n<=1500;
     100% n<=6000
     100% z<=100

样例解释

第一组数据,在2和3之间修建一条长度为4的道路,是这棵树变成一个完全图,且原来的树依然是这个图的唯一最小生成树.

解析:

我们可以按照一种类似Kruskal的思路来做。把边权排个序依次加入并查集。

思路是这样,每次往并查集中加入一条边时,除非是第一条加入的边,那么势必会产生一张没有联通完全的图。按照题意,我们最后得出的是一张完全图,所以说每次加入边的时候我们就可以把没连上的点连上了,反正他们最后势必要连,不如连更小边权的边。我们用Sx和Sy表示某两个不交叉的并查集的元素个数,这时我们假设现在要在两个并查集之间连一条当前的最小边z,假设它的边权为val,其它没有连接的节点如果连接起来,而且我们想让它们的边权最小,就会产生Sx*Sy-1个点相连的情况,以及多出(val+1)*(Sx*Sy-1)的边权。

这就是增加的边权了,而且它势必最小。

参考代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define N 10010
using namespace std;
int s[N],fa[N];
struct node{
int x,y,val;
}g[N];
bool operator<(node a,node b){
return a.val<b.val;
}
int get(int x)
{
if(fa[x]==x) return x;
return fa[x]=get(fa[x]);
}
int main()
{
int t;
cin>>t;
while(t--)
{
memset(s,,sizeof(s));
memset(fa,,sizeof(fa));
int n;
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%d%d%d",&g[i].x,&g[i].y,&g[i].val);
for(int i=;i<=n;i++) fa[i]=i,s[i]=;
sort(g+,g+n);
int ans=;
for(int i=;i<n;i++){
int x=get(g[i].x),y=get(g[i].y),val=g[i].val;
if(x==y) continue;
fa[x]=y;
ans+=(long long)(val+)*(s[x]*s[y]-);
s[y]+=s[x];
}
cout<<ans<<endl;
}
return ;
}

CH6201 走廊泼水节[最小生成树]的更多相关文章

  1. CH6201 走廊泼水节【最小生成树】

    6201 走廊泼水节 0x60「图论」例题 描述 [简化版题意]给定一棵N个节点的树,要求增加若干条边,把这棵树扩充为完全图,并满足图的唯一最小生成树仍然是这棵树.求增加的边的权值总和最小是多少. 我 ...

  2. CH6201走廊泼水节

    题目链接: CH6201 [简化版题意]给定一棵N个节点的树,要求增加若干条边,把这棵树扩充为完全图,并满足图的唯一最小生成树仍然是这棵树.求增加的边的权值总和最小是多少. 输入格式 本题为多组数据~ ...

  3. [tyvj-1391]走廊泼水节 最小生成树

    做克鲁斯卡尔的时候维护一个并查集即可. #include <iostream> #include <cstdio> #include <cstring> #incl ...

  4. 「CH6201」走廊泼水节

    「CH6201」走廊泼水节 传送门 考虑 \(\text{Kruskal}\) 的过程以及用到一个最小生成树的性质即可. 在联通两个联通块时,我们肯定会选择最小的一条边来连接这两个联通块,那么这两个联 ...

  5. [Tvvj1391]走廊泼水节(最小生成树)

    [Tvvj1391]走廊泼水节 Description 给定一棵N个节点的树,要求增加若干条边,把这棵树扩充为完全图,并满足图的唯一最小生成树仍然是这棵树.求增加的边的权值总和最小是多少. 完全图:完 ...

  6. 奇葩最小生成树--->走廊泼水节(tyvj1391)

    题目描述 话说,中中带领的OIER们打算举行一次冬季泼水节,当然这是要秘密进行的,绝对不可以让中中知道.不过中中可是老江湖了,当然很快就发现了我们的小阴谋,于是他准备好水枪迫不及待的想要加入我们了. ...

  7. 【CH6201】走廊泼水节

    题目大意:给定一棵树,要求增加若干条边,将其转化为完全图,且该完全图以该树为唯一的最小生成树,求增加的边权最小是多少. 题解:完全图的问题一般要考虑组合计数.重新跑一遍克鲁斯卡尔算法,每次并查集在合并 ...

  8. tyvj 1391 走廊泼水节【最小生成树】By cellur925

    题目传送门 题意简化:给你一棵树,要求你加边使它成为完全图(任意两点间均有一边相连) ,满足原来的树是这个图的最小生成树.求加边的价值最小是多少. 考虑Kruskal的过程,我们每次找一条最短的,两边 ...

  9. Joy OI【走廊泼水节】题解--最小生成树推论变式

    题目链接: http://joyoi.org/problem/tyvj-1391 思路: 首先这需要一个推论: "给定一张无向图,若用\(k(k<n-1)\)条边构成一个生成森林(可以 ...

随机推荐

  1. consul(一)什么是consul

    1. consul的基本介绍 在分布式架构中,服务治理是一个重要的问题.在没有服务治理的分布式集群中,各个服务之间通过手工或者配置的方式进行服务关系管理,遇到服务关系变化或者增加服务的时候,人肉配置极 ...

  2. MySQL语句增加字段,修改字段名,修改类型,修改默认值

    原文地址:https://blog.csdn.net/kimgoo/article/details/54630257 增加字段:alter table 表名 ADD 字段 类型 约束 [默认值 注释] ...

  3. 打印格式化printf

    #define _DEBUG_ #ifdef _DEBUG_#define  printm(fmt, ...) do { printf("%s line %d, "fmt, __f ...

  4. LeetCode 515. 在每个树行中找最大值(Find Largest Value in Each Tree Row)

    515. 在每个树行中找最大值 515. Find Largest Value in Each Tree Row 题目描述 You need to find the largest value in ...

  5. [转帖]HAProxy 7层 负载均衡

    HAProxy 7层 负载均衡 https://www.cnblogs.com/jicki/p/5546902.html HAProxy 系统 CentOS 5.8 x64 wget http://h ...

  6. Java基础笔试练习(四)

    1.编译Java Application 源程序文件将产生相应的字节码文件,这些字节码文件的扩展名为( ). A.java B.class C.html D.exe 答案: B 解析: Java源程序 ...

  7. STM32之串口编程步骤

    串口编程步骤(非中断)如下: 使能GPIO时钟 使能串口时钟 配置TXD为复用功能+推挽   (站在STM32芯片角度) 配置RXD为复用功能+上拉   ( 站在STM32芯片角度) 设置数据帧 OV ...

  8. leetcode 2019.10.29 首次破百

    刷题首次破百,记录一下自己成长的历程. 仍在路上,会慢慢变强的~

  9. C++根据用户输入打印对应的金层塔层数

    #include <iostream> #include <Windows.h> using namespace std; int main(void) { int row; ...

  10. 二十二、DMA驱动

    一.DMA简介 DMA(Direct Memory Access,直接内存存取),DMA传输将数据从一个地址空间复制到另外一个地址空间.传输过程由DMA控制器独立完成,它并没有拖延CPU的工作,可以让 ...