传送门

由于只要考虑 $\mod 2$ 意义下的答案,所以我们只要维护一堆的 $01$

容易想到用 $bitset$ 瞎搞...,发现当复杂度 $qv/32$ 是可以过的...

一开始容易想到对每个集合开一个 $bitset$ ,叫 $cnt[]$ ,维护各种值的数出现了奇数还是偶数次

因为要维护那个奇怪的 $3$ 操作,所以改成维护各种值的倍数出现了奇数还是偶数次,即

$cnt[x]$ 维护集合内所有 $x|d$ 的数 $d$ 的出现次数

那么对于操作 $3$,$x$ 的倍数和 $y$ 的倍数相乘后 $x$ 的倍数和 $y$ 的倍数数量都是 $cnt[x] \cdot cnt[y]$

然后就可以很容易维护了,因为只有 $0,1$ 那么其实相当于把两个 $bitset$ 取 $\text{'&'}$ 即可

同时对于操作 $2$ ,显然只要对 $bitset$ 取 $\text{'^'}$ 就行

然后操作 $1$ ,直接把 $bitset$ 清空,然后设集合内的数为 $d$ ,那么直接根号筛一下 $d$ 的因数 $x$ 然后 $cnt[x]=1$ 即可

最后是操作 $4$ ,因为我们维护的是 $x$ 的倍数的出现次数,设 $F(x),f(x)$ 分别为 $x$ 倍数出现次数,$x$ 出现次数

那么有 $F(x)=\sum_{x|d} f(d)$ ,然后就发现了熟悉的莫比乌斯反演,我们知道 $F$ 想求 $f$,直接反演可得

$f(x)=\sum_{x|d} \mu (\frac{d}{x}) F(d)$ ,由于 $\mod 2$ 意义下 $-1 \equiv 1$ 所以可以用 $bitset$ 维护一下每个 $x$ 的所有 $x|d$ 的 $\mu(d/x)$

即设 $bitset$ $g[x]$ 维护一下 $x|d$ 的 $g[x][d]=\mu(d/x)$ 然后对于 $4$ 操作 $(4\ x\ v)$ 就是 $(cnt[x]&g[v]).count()&1$

代码不长

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<bitset>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=1e5+,M=;
int n,Q;
int pri[M],mu[M],tot;
bool not_pri[M];
bitset <M> cnt[N],g[M];
void init()
{
not_pri[]=; mu[]=;
for(int i=;i<M;i++)
{
if(!not_pri[i]) pri[++tot]=i,mu[i]=;
for(int j=;j<=tot;j++)
{
ll g=1ll*i*pri[j]; if(g>=M) break;
not_pri[g]=; if(i%pri[j]==) break;
mu[g]=-mu[i];
}
}
for(int i=;i<M;i++)
for(int j=i;j<M;j+=i)
g[i][j]=abs(mu[j/i]);
}
int main()
{
n=read(),Q=read(); init();
int a,b,c,d;
while(Q--)
{
a=read(),b=read(),c=read();
if(a==)
{
cnt[b]=; int T=sqrt(c);
for(int i=;i<=T;i++)
if(c%i==) cnt[b][i]=cnt[b][c/i]=;
}
else if(a==) d=read(),cnt[b]=cnt[c]^cnt[d];
else if(a==) d=read(),cnt[b]=cnt[c]&cnt[d];
else printf("%d",int((cnt[b]&g[c]).count())&);
}
puts(""); return ;
}

Codeforces 1097F. Alex and a TV Show的更多相关文章

  1. Codeforces 1097F Alex and a TV Show (莫比乌斯反演)

    题意:有n个可重集合,有四种操作: 1:把一个集合设置为单个元素v. 2:两个集合求并集. 3:两个集合中的元素两两求gcd,然后这些gcd形成一个集合. 4:问某个可重复集合的元素v的个数取模2之后 ...

  2. Codeforces 1097 Alex and a TV Show

    传送门 除了操作 \(3\) 都可以 \(bitset\) 现在要维护 \[C_i=\sum_{gcd(j,k)=i}A_jB_k\] 类比 \(FWT\),只要求出 \(A'_i=\sum_{i|d ...

  3. 【Codeforces 1097F】Alex and a TV Show(bitset & 莫比乌斯反演)

    Description 你需要维护 \(n\) 个可重集,并执行 \(m\) 次操作: 1 x v:\(X\leftarrow \{v\}\): 2 x y z:\(X\leftarrow Y \cu ...

  4. 【CF1097F】Alex and a TV Show(bitset)

    [CF1097F]Alex and a TV Show(bitset) 题面 洛谷 CF 题解 首先模\(2\)意义下用\(bitset\)很明显了. 那么问题在于怎么处理那个\(gcd\)操作. 然 ...

  5. CF1097F Alex and a TV Show

    题目地址:CF1097F Alex and a TV Show bitset+莫比乌斯反演(个人第一道莫比乌斯反演题) 由于只关心出现次数的奇偶性,显然用bitset最合适 但我们并不直接在bitse ...

  6. 【CF1097F】Alex and a TV Show

    [CF1097F]Alex and a TV Show 题面 洛谷 题解 我们对于某个集合中的每个\(i\),令\(f(i)\)表示\(i\)作为约数出现次数的奇偶性. 因为只要因为奇偶性只有\(0, ...

  7. CodeForces - 1097F:Alex and a TV Show (bitset & 莫比乌斯容斥)

    Alex decided to try his luck in TV shows. He once went to the quiz named "What's That Word?!&qu ...

  8. [Codeforces 863E]Turn Off The TV

    Description Luba needs your help again! Luba has n TV sets. She knows that i-th TV set will be worki ...

  9. CF1097F Alex and a TV Show 莫比乌斯反演、bitset

    传送门 发现自己对mobius反演的理解比较浅显-- 首先我们只需要维护每一个数的出现次数\(\mod 2\)的值,那么实际上我们只需要使用\(bitset\)进行维护,每一次加入一个数将其对应次数异 ...

随机推荐

  1. 前端知识点回顾——koa和模板引擎

    koa 基于Node.js的web框架,koa1只兼容ES5,koa2兼容ES6及以后. const Koa = requier("koa"); const koa = new K ...

  2. vue-cli项目模板的一些思考

    之前有个想法,就是要利用vue写一套ui.然后当时也没有搞清楚到底怎么写. 几经周转吧,通过付费的方式在gitbook上面找到了答案. 找到答案之后再看我们正在开发的项目,看伙伴写的代码,突然发现完全 ...

  3. linux rtc中废弃的接口和新的接口

    1. 废弃的接口 rtc_tm_to_time 2. 替换废弃接口的新接口 rtc_tm_sub

  4. java多线程面试题整理及答案(2019年)

    1) 什么是线程? 线程是操作系统能够进行运算调度的最小单位,它被包含在进程之中,是进程中的实际运作单位.程序员可以通过它进行多处理器编程,你可以使用多线程对 运算密集型任务提速.比如,如果一个线程完 ...

  5. 二、navicat连接本地数据库以及远程数据库

    本地连接 1.打开navicat 2.连接 最后点击确定就连接成功了: 远程数据库 和上面一样.....

  6. SQL-W3School-基础:SQL SELECT 语句

    ylbtech-SQL-W3School-基础:SQL SELECT 语句 1.返回顶部 1. 本章讲解 SELECT 和 SELECT * 语句. SQL SELECT 语句 SELECT 语句用于 ...

  7. InsetDrawable

    表示把一个Drawable嵌入到另外一个Drawable的内部,并且在内部留一些间距, 类似与Drawable的padding属性,但padding表示的是Drawable的内容与Drawable本身 ...

  8. kotlin中访问封闭作用内的变量

    在java中,匿名对象访问封闭作用域内的变量,需要用final 声明变量在java8中,如果只是使用封闭作用域内的变量,该变量并不需要使用final,但是一旦修改值,就需要使用final 来声明变量. ...

  9. mongodb download

    https://www.mongodb.org/dl/win32/x86_64-2008plus-ssl

  10. Access restriction: The type JPEGImageEncoder is not accessible due to restriction

    转: 解决办法:Access restriction: The type JPEGImageEncoder is not accessible due to restriction 2011年11月2 ...