递归版

UOJ34多项式乘法

//容易暴栈,但是很好理解
#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
const int maxlongint=2147483647;
const int mo=1e9+7;
const int N=400005;
const double pi=acos(-1);
using namespace std;
struct arr
{
double x,y;
arr() {x=y=0;}
arr(double x,double y):x(x),y(y) {}
}a[N],b[N],c[N];
arr operator +(arr x,arr y) {return arr(x.x+y.x,x.y+y.y);}
arr operator -(arr x,arr y) {return arr(x.x-y.x,x.y-y.y);}
arr operator *(arr x,arr y) {return arr(x.x*y.x-x.y*y.y,x.x*y.y+y.x*x.y);}
int n,m,fn;
void FFT(arr *y,int n,int t)
{
if(n==1) return;
arr a0[n>>1],a1[n>>1];
for(int i=0;i<n;i+=2) a0[i>>1]=y[i],a1[i>>1]=y[i+1];
FFT(a0,n>>1,t),FFT(a1,n>>1,t);
arr w1(cos(2*pi/n),t*sin(2*pi/n)),w0(1,0);
for(int i=0;i<n>>1;i++,w0=w0*w1) y[i]=a0[i]+w0*a1[i],y[i+(n>>1)]=a0[i]-w0*a1[i];
}
int main()
scanf("%d%d",&n,&m);
for(int i=0;i<=n;i++) scanf("%lf",&a[i].x);
for(int i=0;i<=m;i++) scanf("%lf",&b[i].x);
fn=1;
while(fn<=n+m) fn<<=1;
FFT(a,fn,1),FFT(b,fn,1);
for(int i=0;i<fn;i++) c[i]=a[i]*b[i];
FFT(c,fn,-1);
for(int i=0;i<=n+m;i++) printf("%.0lf ",abs(c[i].x/fn));
}

非递归版

BZOJ3527[Zjoi2014]力

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
const int maxlongint=2147483647;
const int mo=1e9+7;
const int N=400005;
const double pi=acos(-1);
using namespace std;
struct arr
{
double x,y;
arr() {x=y=0;}
arr(double x1,double y1) {x=x1,y=y1;};
}q[N],r[N],f[N],f1[N];
int n,fn;
double qq[N];
arr operator + (arr x,arr y) {return arr(x.x+y.x,x.y+y.y);}
arr operator - (arr x,arr y) {return arr(x.x-y.x,x.y-y.y);}
arr operator * (arr x,arr y) {return arr(x.x*y.x-x.y*y.y,x.x*y.y+x.y*y.x);}
void FFT(arr *a,int n,int t)
{
for(int i=0,p=0;i<n;i++)
{
if(i<p) swap(a[i],a[p]);
for(int j=n>>1;(p^=j)<j;j>>=1);
}
for(int m=2;m<=n;m<<=1)
{
int half=m>>1;
for(int i=0;i<half;i++)
{
arr w0(cos(i*pi*t/half),sin(i*pi*t/half)),aj;
for(int j=i;j<n;j+=m) aj=a[j],a[j]=aj+w0*a[j+half],a[j+half]=aj-w0*a[j+half];
}
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%lf",&qq[i]),r[i].x=1.0/i/i,q[i].x=qq[i];
for(fn=1;fn<n*2+1;fn<<=1);
FFT(q,fn,1),FFT(r,fn,1);
for(int i=0;i<fn;i++) f[i]=q[i]*r[i];
FFT(f,fn,-1);
memset(q,0,sizeof(q));
memset(r,0,sizeof(r));
for(int i=1;i<=n;i++) r[i].x=1.0/i/i,q[i].x=qq[n-i+1];
FFT(q,fn,1),FFT(r,fn,1);
for(int i=0;i<fn;i++) f1[i]=q[i]*r[i];
FFT(f1,fn,-1);
for(int i=1;i<=n;i++) printf("%.3lf\n",(f[i].x-f1[n-i+1].x)/fn);
}

快速傅立叶变换FFT模板的更多相关文章

  1. 快速傅立叶变换(FFT)算法

    已知多项式f(x)=a0+a1x+a2x2+...+am-1xm-1, g(x)=b0+b1x+b2x2+...+bn-1xn-1.利用卷积的蛮力算法,得到h(x)=f(x)g(x),这一过程的时间复 ...

  2. 为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换

    写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!!一.傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶 ...

  3. 离散傅立叶变换与快速傅立叶变换(DFT与FFT)

    自从去年下半年接触三维重构以来,听得最多的词就是傅立叶变换,后来了解到这个变换在图像处理里面也是重点中的重点. 本身自己基于高数知识的理解是傅立叶变换是将一个函数变为一堆正余弦函数的和的变换.而图像处 ...

  4. $\mathcal{FFT}$·$\mathcal{Fast \ \ Fourier \ \ Transformation}$快速傅立叶变换

    \(2019.2.18upd:\) \(LINK\) 之前写的比较适合未接触FFT的人阅读--但是有几个地方出了错,大家可以找一下233 啊-本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一 ...

  5. BZOJ 2194 快速傅立叶变换之二 | FFT

    BZOJ 2194 快速傅立叶变换之二 题意 给出两个长为\(n\)的数组\(a\)和\(b\),\(c_k = \sum_{i = k}^{n - 1} a[i] * b[i - k]\). 题解 ...

  6. 快速傅立叶变换(FFT)

    多项式 系数表示法 设\(f(x)\)为一个\(n-1\)次多项式,则 \(f(x)=\sum\limits_{i=0}^{n-1}a_i*x_i\) 其中\(a_i\)为\(f(x)\)的系数,用这 ...

  7. 傅立叶变换—FFT

    FFT(快速傅立叶变换)使用“分而治之”的策略来计算一个n阶多项式的n阶DFT系数的值.定义n为2的整数幂数,为了计算一个n阶多项式f(x),算法定义了连个新的n/2阶多项式,函数f[0](x)包含了 ...

  8. NVIDIA GPU的快速傅立叶变换

    NVIDIA GPU的快速傅立叶变换 cuFFT库提供GPU加速的FFT实现,其执行速度比仅CPU的替代方案快10倍.cuFFT用于构建跨学科的商业和研究应用程序,例如深度学习,计算机视觉,计算物理, ...

  9. 傅立叶变换系列(五)快速傅立叶变换(FFT)

    说明: 傅里叶级数.傅里叶变换.离散傅里叶变换.短时傅里叶变换...这些理解和应用都非常难,网上的文章有两个极端:“Esay”  Or  “Boring”!如果单独看一两篇文章就弄懂傅里叶,那说明你真 ...

随机推荐

  1. CentOS7之yum仓库配置

    操作系统版本:CentOS Linux release 7.2.1511 (Core)  Yum软件版本:yum-3.4.3-132.el7.centos.0.1.noarch  Yum主配置文件:/ ...

  2. 小程序api使用报错

    小程序连接api报错: 如若已在管理后台更新域名配置,请刷新项目配置后重新编译项目,操作路径:“项目-域名信息” 解决办法如下: 点击设置—-项目设置—勾选如下选项即可解决

  3. STL map 常见用法详解

    <算法笔记>学习笔记 map 常见用法详解 map翻译为映射,也是常用的STL容器 map可以将任何基本类型(包括STL容器)映射到任何基本类型(包括STL容器) 1. map 的定义 / ...

  4. Smarty内置函数之capture

    capture的作用是: 捕获模板输出的数据并将其存储到一个变量,而不是把它们输出到页面,任何在 {capture name="foo"}和{/capture}之间的数据将被存储到 ...

  5. 怎样在 Vue 的 component 组件中使用 props ?

    1. 在注册一个组件时, 添加一个 props 属性, 将需要添加的 props 作为数组的元素进行添加, 比如下面的例子中, 我们添加了一个变量 name , 他就是一个 props, 我们可以通过 ...

  6. JS基础_while的练习2

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  7. HBASE学习笔记(五)

    一.HBase的RowKey设计原则 1.我们知道HBase是三维有序存储的,通过RowKey(行键),ColumnKey(Column family和qualifier)和TimeStamp(时间戳 ...

  8. 嵌套For循环性能优化

    请对以下的代码进行优化 for (int i = 0; i < 1000; i++) for (int j = 0; j < 100; j++) for (int k = 0; k < ...

  9. pyquery 库的使用

    from pyquery import PyQuery as pq # 文件勿命名为 pyquery.py,会发生冲突 # 字符串初始化 html = ''' <div id="pag ...

  10. C# 获取当前执行DLL 所在路径

    有的时候,当前执行的DLL 和启动的EXE 所在路径并不一致,这时我们想要获得当前执行DLL 所在路径可以使用下面的方法. // Summary: // Gets the path or UNC lo ...