题目大意:给定一个 N 个点,M 条边的无向图,边有两个边权 a, b,求从 1 号节点到 N 号节点路径的两个权值和的最大值最小是多少。

题解:

对于有两个属性的结构的最优化问题,可以考虑先按照其中一个分量进行排序。接着从小到大枚举这个有序的分量,计算以当前枚举到的值为这一分量的最大值时,全局的最优解是多少。因此,需要高效维护的是如何求出另一个分量的最优解。

对于这道题来说,考虑对 a 分量进行排序,并按从小到大的顺序依次加边。对于即将加入的第 i 条边来说,若加入这条边使得两个本来不联通的点联通,则直接加入;若加入这条边之后,形成了环,则比较加入这条边 b 的权值和这条边两个端点之间路径上 b 的最大值,若当前边的 b 更小,则断开路径上最大边权的边,并加入当前这条边即可。利用 lct 进行维护 b 即可。

代码如下

#include <bits/stdc++.h>

using namespace std;

struct edge {
int x, y, a, b;
edge(int _x = 0, int _y = 0, int _a = 0, int _b = 0) {
x = _x, y = _y;
a = _a, b = _b;
}
}; struct node {
node* l;
node* r;
node* p;
int rev, b, maxb, id;
node(int _b = 0, int _id = -1) {
l = r = p = NULL;
b = _b;
id = _id;
rev = 0;
}
void unsafe_reverse() {
swap(l, r);
rev ^= 1;
}
void pull() {
maxb = b;
if (l != NULL) {
l->p = this;
maxb = max(maxb, l->maxb);
}
if (r != NULL) {
r->p = this;
maxb = max(maxb, r->maxb);
}
}
void push() {
if (rev) {
if (l != NULL) {
l->unsafe_reverse();
}
if (r != NULL) {
r->unsafe_reverse();
}
rev = 0;
}
}
};
bool is_root(node* v) {
if (v == NULL) {
return false;
}
return (v->p == NULL) || (v->p->l != v && v->p->r != v);
}
void rotate(node* v) {
node* u = v->p;
assert(u != NULL);
v->p = u->p;
if (v->p != NULL) {
if (v->p->l == u) {
v->p->l = v;
}
if (v->p->r == u) {
v->p->r = v;
}
}
if (v == u->l) {
u->l = v->r;
v->r = u;
}
if (v == u->r) {
u->r = v->l;
v->l = u;
}
u->pull();
v->pull();
}
void deal_with_push(node* v) {
static stack<node*> s;
while (true) {
s.push(v);
if (is_root(v)) {
break;
}
v = v->p;
}
while (!s.empty()) {
s.top()->push();
s.pop();
}
}
void splay(node* v) {
deal_with_push(v);
while (!is_root(v)) {
node* u = v->p;
if (!is_root(u)) {
if ((v == u->l) ^ (u == u->p->l)) {
rotate(v);
} else {
rotate(u);
}
}
rotate(v);
}
}
void access(node* v) {
node* u = NULL;
while (v != NULL) {
splay(v);
v->r = u;
v->pull();
u = v;
v = v->p;
}
}
void make_root(node* v) {
access(v);
splay(v);
v->unsafe_reverse();
}
node* find_root(node* v) {
access(v);
splay(v);
while (v->l != NULL) {
v->push();
v = v->l;
}
splay(v);
return v;
}
void link(node* v, node* u) {
if (find_root(v) != find_root(u)) {
make_root(v);
v->p = u;
}
}
void cut(node* v, node* u) {
make_root(v);
if (find_root(u) == v && u->p == v && u->l == NULL) {
u->p = v->r = NULL;
v->pull();
}
}
void split(node* v, node* u) {
make_root(v);
access(u);
splay(u);
}
node* find(node* v, int b) {
while (true) {
if (v->b == b) {
break;
}
if (v->l != NULL && v->l->maxb == b) {
v = v->l;
} else {
v = v->r;
}
}
return v;
} int main() {
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int n, m; // 0-indexed
cin >> n >> m;
vector<edge> e;
for (int i = 0; i < m; i++) {
int x, y, a, b;
cin >> x >> y >> a >> b;
e.emplace_back(--x, --y, a, b);
}
sort(e.begin(), e.end(), [&](const edge &x, const edge &y) {
return x.a < y.a;
});
vector<node*> t(n + m);
for (int i = 0; i < n; i++) {
t[i] = new node(0, i);
}
int ans = 1e9;
for (int i = 0; i < m; i++) {
int a = e[i].a, b = e[i].b;
int x = e[i].x, y = e[i].y;
if (find_root(t[x]) != find_root(t[y])) {
t[i + n] = new node(b, i + n);
link(t[x], t[i + n]);
link(t[y], t[i + n]);
} else {
split(t[x], t[y]);
if (b < t[y]->maxb) {
node* v = find(t[y], t[y]->maxb);
int id = v->id - n;
int vx = e[id].x, vy = e[id].y;
cut(t[vx], v), cut(t[vy], v);
t[i + n] = new node(b, i + n);
link(t[x], t[i + n]);
link(t[y], t[i + n]);
}
}
if (find_root(t[0]) == find_root(t[n - 1])) {
split(t[0], t[n - 1]);
ans = min(ans, a + t[n - 1]->maxb);
}
}
if (ans == 1e9) {
cout << "-1" << endl;
} else {
cout << ans << endl;
}
return 0;
}

【洛谷P2387】魔法森林的更多相关文章

  1. 洛谷—— P2387 魔法森林

    题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…, ...

  2. 洛谷 U87561 魔法月饼

    洛谷 U87561 魔法月饼 洛谷传送门 题目背景 \(9102\)年的中秋节注定与往年不同...因为在\(9102\)年的中秋节前夕,\(Seaway\)被告知今年的中秋节要新出一款月饼--魔法月饼 ...

  3. 洛谷 P2387 [NOI2014]魔法森林 解题报告

    P2387 [NOI2014]魔法森林 题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2 ...

  4. 洛谷P2387 [NOI2014]魔法森林(lct维护最小生成树)

    题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…, ...

  5. AC日记——魔法森林 洛谷 P2387

    魔法森林 思路: spfa水过(正解lct); 代码: #include <bits/stdc++.h> using namespace std; #define maxn 50005 # ...

  6. 洛谷P2387 [NOI2014]魔法森林(LCT)

    魔法森林 题目传送门 解题思路 把每条路按照\(a\)的值从小到大排序.然后用LCT按照b的值维护最小生成树,将边按照顺序放入.如果\(1\)到\(n\)有了一条路径,就更新最小答案.这个过程就相当于 ...

  7. [洛谷P1822] 魔法指纹

    洛谷题目连接:魔法指纹 题目描述 对于任意一个至少两位的正整数n,按如下方式定义magic(n):将n按十进制顺序写下来,依次对相邻两个数写下差的绝对值.这样,得到了一个新数,去掉前导0,则定义为ma ...

  8. 洛谷P2387 [NOI2014]魔法森林(LCT,Splay)

    在XZY&XZZ巨佬的引领下,一枚蒟蒻终于啃动了这道题...... 这次还是第一次写LCT维护边权,还要化边为点,思路乱七八糟的,写起来也不顺手,还好调了许久终于AC啦. 贪心排序按一个关键字 ...

  9. 洛谷P2387 [NOI2014]魔法森林(LCT)

    在XZY&XZZ巨佬的引领下,一枚蒟蒻终于啃动了这道题...... 这次还是第一次写LCT维护边权,还要化边为点,思路乱七八糟的,写起来也不顺手,还好调了许久终于AC啦. 贪心排序按一个关键字 ...

随机推荐

  1. python装饰器使用详解

    装饰器 '''装饰器:就是闭包(闭包的一个应用场景) -- 把要被装饰的函数作为外层函数的参数通过闭包操作后返回一个替代版函数 优点: -- 丰富了原有函数的功能 -- 提高了程序的可拓展性''' 开 ...

  2. golang break label 与goto label

    本文链接:https://blog.csdn.net/itbsl/article/details/73380537 与其他语言一样,Go语言也支持label(标签)语法:分别是break label和 ...

  3. React组件优化

    父组件传值给子组件时只要文本框发生变化就会重新渲染render,我理解我会影响性能,记录下方法用这个生命周期 shouldComponentUpdate 的方法就可以解决子组件重复渲染的问题 shou ...

  4. JSP与Servlet之间的交互,传值

    一.Servlet 首先要明白一点,servlet需要容器的支持才能够运行,如Tomcat.jetty 达到servlet的请求,需要ServletRequest对象和ServletResponse对 ...

  5. 小白windows上搭建linux环境

    我使用的oracle VM VirtualBox,下载使用就好了 这是用的虚拟机,不是搭建linux系统,不用担心把电脑搞坏,游戏打不了 全程很简单,基本都是默认,下一步 下一步 默认下一步 创建 下 ...

  6. java进程CPU高分析

    JVM导致系统CPU高的常见场景: 内存不足,JVM gc频繁,一般会伴随OOMJVM某个线程死循环或者递归调用 定位和解决1.内存不足,gc频繁可参考我的这遍文章解决.https://blog.cs ...

  7. Spring 注解介绍

    @Component与@Bean的区别 @Component注解表明一个类会作为组件类,并告知Spring要为这个类创建bean. @Bean注解告诉Spring这个方法将会返回一个对象,这个对象要注 ...

  8. P3748 [六省联考2017]摧毁“树状图”

    传送门 显然是可以树形 $dp$ 的 对每个节点维护以下 $5$ 个东西 $1.$ 从当前节点出发往下的链的最大贡献 $2.$ 节点子树内不经过本身的路径最大贡献 $3.$ 节点子树内经过本身的路径的 ...

  9. hadoop面试题(自己整理版)

    1. hadoop 运行原理2. mapreduce 原理3. mapreduce 的优化4.举一个简单的例子说下 mapreduce 是怎么运行的5. hadoop 中 combiner 的作用6. ...

  10. VS2019 快捷键

    工欲善其事,必先利其器,整理了下VS最常用的快捷键,查看了不少资料,汇总了下,没有的自己补充,可以打印,用Excel编辑的. 可编辑版本下载:Excel文件下载 你可能需要查询其他的快捷键,MSDN介 ...