Contest Info


[Practice Link](https://codeforces.com/contest/1238)

Solved A B C D E F G
6/7 O O O O Ø Ø -
  • O 在比赛中通过
  • Ø 赛后通过
  • ! 尝试了但是失败了
  • - 没有尝试

Solutions


A. Prime Subtraction

签到。

B. Kill 'Em All

签到。

C. Standard Free2play

贪心即可。

代码:

view code
#include <bits/stdc++.h>
#define debug(...) { printf("# "); printf(__VA_ARGS__); puts(""); }
#define fi first
#define se second
#define endl "\n"
using namespace std;
using db = double;
using ll = long long;
using ull = unsigned long long;
using pII = pair <int, int>;
using pLL = pair <ll, ll>;
constexpr int mod = 1e9 + 7;
template <class T1, class T2> inline void chadd(T1 &x, T2 y) { x += y; while (x >= mod) x -= mod; while (x < 0) x += mod; }
template <class T1, class T2> inline void chmax(T1 &x, T2 y) { if (x < y) x = y; }
template <class T1, class T2> inline void chmin(T1 &x, T2 y) { if (x > y) x = y; }
inline int rd() { int x; cin >> x; return x; }
template <class T> inline void rd(T &x) { cin >> x; }
template <class T> inline void rd(vector <T> &vec) { for (auto &it : vec) cin >> it; }
inline void pt() { cout << endl; }
template <class T, class... Ts> void pt(const T& arg, const Ts&... args) { cout << arg << " "; pt(args...); }
template <class T> inline void pt(const T &s) { cout << s << "\n"; }
template <class T> inline void pt(const vector <T> &vec) { for (auto &it : vec) cout << it << " "; cout << endl; }
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
inline ll qpow(ll base, ll n) { ll res = 1; while (n) { if (n & 1) res = res * base % mod; base = base * base % mod; n >>= 1; } return res; }
constexpr int N = 2e5 + 10;
int h, n, a[N];
void run() {
cin >> h >> n;
for (int i = 1; i <= n; ++i) cin >> a[i];
if (n == 1) return pt(0);
int res = 0, lst = h;
for (int i = 2; i <= n; ++i) {
if (lst <= a[i]) continue;
lst = a[i] + 1;
if (i == n) {
if (lst >= 3) ++res;
break;
}
if (lst - a[i + 1] >= 3) {
++res;
lst = a[i + 1] + 1;
} else {
lst = a[i + 1];
}
}
pt(res);
} int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr); cout.tie(nullptr);
cout << fixed << setprecision(20);
int _T; cin >> _T;
while (_T--) run();
return 0;
}

D. AB-string

题意:

给出一个字符串\(S\),其字符集只有'A', 'B',现在统计有多少个子串是符合要求的,一个子串是符合要求的当且仅当其中每个字符都属于一个长度大于\(1\)的回文子串中。

思路:

考虑符合要求的串的长度肯定大于等于\(2\),那么只有一种字符是符合要求的。

再考虑,枚举每个左端点,找多少个右端点是符合的。

首先\(AB\)是不符合的,但是\(ABA\),并且后面不管加什么字符都是符合的。

那么\(AAAABA\)后面不管加什么字符都是符合的。

对于首字母是\(B\)的同理考虑即可。

代码:

view code
#include <bits/stdc++.h>
#define debug(...) { printf("# "); printf(__VA_ARGS__); puts(""); }
#define fi first
#define se second
#define endl "\n"
using namespace std;
using db = double;
using ll = long long;
using ull = unsigned long long;
using pII = pair <int, int>;
using pLL = pair <ll, ll>;
constexpr int mod = 1e9 + 7;
template <class T1, class T2> inline void chadd(T1 &x, T2 y) { x += y; while (x >= mod) x -= mod; while (x < 0) x += mod; }
template <class T1, class T2> inline void chmax(T1 &x, T2 y) { if (x < y) x = y; }
template <class T1, class T2> inline void chmin(T1 &x, T2 y) { if (x > y) x = y; }
inline int rd() { int x; cin >> x; return x; }
template <class T> inline void rd(T &x) { cin >> x; }
template <class T> inline void rd(vector <T> &vec) { for (auto &it : vec) cin >> it; }
inline void pt() { cout << endl; }
template <class T, class... Ts> void pt(const T& arg, const Ts&... args) { cout << arg << " "; pt(args...); }
template <class T> inline void pt(const T &s) { cout << s << "\n"; }
template <class T> inline void pt(const vector <T> &vec) { for (auto &it : vec) cout << it << " "; cout << endl; }
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
inline ll qpow(ll base, ll n) { ll res = 1; while (n) { if (n & 1) res = res * base % mod; base = base * base % mod; n >>= 1; } return res; }
constexpr int N = 3e5 + 10;
int n; char s[N];
vector <int> A, B;
void run() {
cin >> (s + 1);
A.clear(); B.clear();
for (int i = 1; i <= n; ++i) {
if (s[i] == 'A') A.push_back(i);
else B.push_back(i);
}
ll res = 0;
for (int i = 1; i < n; ++i) {
if (s[i] == 'A') {
auto nx = upper_bound(B.begin(), B.end(), i);
if (nx == B.end()) {
res += (n - i);
} else if (*nx == i + 1) {
auto nnx = upper_bound(A.begin(), A.end(), *nx);
if (nnx != A.end()) {
res += n - *nnx + 1;
}
} else {
res += n - i - 1;
}
} else {
auto nx = upper_bound(A.begin(), A.end(), i);
if (nx == A.end()) {
res += n - i;
} else if (*nx == i + 1) {
auto nnx = upper_bound(B.begin(), B.end(), *nx);
if (nnx != B.end()) {
res += n - *nnx + 1;
}
} else {
res += n - i - 1;
}
}
}
pt(res);
} int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr); cout.tie(nullptr);
cout << fixed << setprecision(20);
while (cin >> n) run();
return 0;
}

E. Keyboard Purchase

题意:

给出一个字符串\(S\),现在要造一个键盘,这个键盘只有一排键,要敲打这段字符串\(S\),花费是:

\[\begin{eqnarray*}
\sum\limits_{i = 2}^n |pos_{s_{i - 1}} - pos_{s_i}|
\end{eqnarray*}
\]

现在问最小代价,在选择合适的键盘下,键盘上键位是自定的。

思路:

我们考虑拆绝对值,那么对于两个相邻的\((a, b)\),那么我们只需要关心\(pos_a\)是在\(pos_b\)的前面还是后面即可,这样就确定了绝对值中的符号。

那么用\(f[i][j]\)表示前\(i\)个位置,选择的字符二进制状态为\(j\)的最小代价。

那么只需要考虑\(f[i][S]\)转移到\(f[i + 1][S \cup \{v\}] for\;v \notin S\)

代码:

view code
#pragma GCC optimize("Ofast,unroll-loops,no-stack-protector,fast-math")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include <bits/stdc++.h>
#define debug(...) { printf("# "); printf(__VA_ARGS__); puts(""); }
#define fi first
#define se second
#define endl "\n"
using namespace std;
using db = double;
using ll = long long;
using ull = unsigned long long;
using pII = pair <int, int>;
using pLL = pair <ll, ll>;
constexpr int mod = 1e9 + 7;
template <class T1, class T2> inline void chadd(T1 &x, T2 y) { x += y; while (x >= mod) x -= mod; while (x < 0) x += mod; }
template <class T1, class T2> inline void chmax(T1 &x, T2 y) { if (x < y) x = y; }
template <class T1, class T2> inline void chmin(T1 &x, T2 y) { if (x > y) x = y; }
inline int rd() { int x; cin >> x; return x; }
template <class T> inline void rd(T &x) { cin >> x; }
template <class T> inline void rd(vector <T> &vec) { for (auto &it : vec) cin >> it; }
inline void pt() { cout << endl; }
template <class T, class... Ts> void pt(const T& arg, const Ts&... args) { cout << arg << " "; pt(args...); }
template <class T> inline void pt(const T &s) { cout << s << "\n"; }
template <class T> inline void pt(const vector <T> &vec) { for (auto &it : vec) cout << it << " "; cout << endl; }
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
inline ll qpow(ll base, ll n) { ll res = 1; while (n) { if (n & 1) res = res * base % mod; base = base * base % mod; n >>= 1; } return res; }
constexpr int N = 1e5 + 10;
int n, m, w[30][30], f[1 << 21], g[1 << 21][22], num[1 << 21], lg[1 << 21]; char s[N];
void run() {
cin >> (s + 1);
memset(w, 0, sizeof w);
for (int i = 1; i < n; ++i) {
int c = s[i] - 'a', c2 = s[i + 1] - 'a';
if (c == c2) continue;
++w[c][c2];
++w[c2][c];
}
int lim = 1 << m;
memset(g, 0, sizeof g);
for (int i = 1; i < lim; ++i) {
for (int j = 0; j < m; ++j) {
int lb = i & -i;
g[i][j] = g[i ^ lb][j] + w[j][lg[lb]];
}
}
memset(f, 0x3f, sizeof f); f[0] = 0;
for (int i = 0; i < lim; ++i) {
for (int j = 0; j < m; ++j) {
if (!((i >> j) & 1)) {
int pos = num[i] + 1;
chmin(f[i ^ (1 << j)], f[i] + g[i][j] * pos - g[(lim - 1) ^ i ^ (1 << j)][j] * pos);
}
}
}
pt(f[lim - 1]);
} int main() {
memset(num, 0, sizeof num);
for (int i = 1; i < 1 << 20; ++i)
num[i] = num[i ^ (i & -i)] + 1;
memset(lg, 0, sizeof lg);
lg[0] = -1; lg[1] = 0;
for (int i = 2; i < 1 << 20; i <<= 1) lg[i] = lg[i >> 1] + 1;
ios::sync_with_stdio(false);
cin.tie(nullptr); cout.tie(nullptr);
cout << fixed << setprecision(20);
while (cin >> n >> m) run();
return 0;
}

F. The Maximum Subtree

题意:

定义一张图是合法的当且仅当,每个点表示一个一维数轴上的线段的时候,两个点有边当且仅当他们表示的线段有交集。

现在给出一棵树,问最多选择多少个点构成的子树是合法的。

思路:

多\(wa\)几发就可以发现一个点如果之和父亲有边,那么这种点是随便加的。

那么对于一个点如果它和儿子连了边,那么它要和其父亲连边,那么其父亲最多连这样的点两个,并且其父亲是根。

然后再用每个点的子树的最大值更新答案。

代码:

view code
#include <bits/stdc++.h>
#define debug(...) { printf("# "); printf(__VA_ARGS__); puts(""); }
#define fi first
#define se second
#define endl "\n"
using namespace std;
using db = double;
using ll = long long;
using ull = unsigned long long;
using pII = pair <int, int>;
using pLL = pair <ll, ll>;
constexpr int mod = 1e9 + 7;
template <class T1, class T2> inline void chadd(T1 &x, T2 y) { x += y; while (x >= mod) x -= mod; while (x < 0) x += mod; }
template <class T1, class T2> inline void chmax(T1 &x, T2 y) { if (x < y) x = y; }
template <class T1, class T2> inline void chmin(T1 &x, T2 y) { if (x > y) x = y; }
inline int rd() { int x; cin >> x; return x; }
template <class T> inline void rd(T &x) { cin >> x; }
template <class T> inline void rd(vector <T> &vec) { for (auto &it : vec) cin >> it; }
inline void pt() { cout << endl; }
template <class T, class... Ts> void pt(const T& arg, const Ts&... args) { cout << arg << " "; pt(args...); }
template <class T> inline void pt(const T &s) { cout << s << "\n"; }
template <class T> inline void pt(const vector <T> &vec) { for (auto &it : vec) cout << it << " "; cout << endl; }
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
inline ll qpow(ll base, ll n) { ll res = 1; while (n) { if (n & 1) res = res * base % mod; base = base * base % mod; n >>= 1; } return res; }
constexpr int N = 3e5 + 10;
int n, f[N], rt, res;
vector <vector<int>> G;
void dfs(int u, int fa) {
int Max[2] = {0, 0};
int sons = 0;
for (auto &v : G[u]) {
if (v == fa) continue;
++sons;
dfs(v, u);
if (f[v] > Max[0]) {
swap(Max[0], Max[1]);
Max[0] = f[v];
} else if (f[v] > Max[1]) Max[1] = f[v];
}
if (u != rt) {
f[u] = Max[0] + 1 + max(0, sons - 1);
chmax(res, Max[0] + Max[1] + 1 + max(0, sons - 1));
} else {
f[u] = Max[0] + Max[1] + 1 + max(0, sons - 2);
chmax(res, f[u]);
}
}
void run() {
cin >> n;
memset(f, 0, sizeof (f[0]) * (n + 10));
G.clear(); G.resize(n + 1);
for (int i = 1, u, v; i < n; ++i) {
cin >> u >> v;
G[u].push_back(v);
G[v].push_back(u);
}
rt = 1; res = 0;
for (int i = 2; i <= n; ++i) {
if (G[i].size() > 1) {
rt = i;
break;
}
}
dfs(rt, rt);
pt(res);
} int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr); cout.tie(nullptr);
cout << fixed << setprecision(20);
int _T; cin >> _T;
while (_T--) run();
return 0;
}

Educational Codeforces Round 74的更多相关文章

  1. Educational Codeforces Round 74 (Rated for Div. 2) D. AB-string

    链接: https://codeforces.com/contest/1238/problem/D 题意: The string t1t2-tk is good if each letter of t ...

  2. Educational Codeforces Round 74 (Rated for Div. 2) C. Standard Free2play

    链接: https://codeforces.com/contest/1238/problem/C 题意: You are playing a game where your character sh ...

  3. Educational Codeforces Round 74 (Rated for Div. 2) B. Kill 'Em All

    链接: https://codeforces.com/contest/1238/problem/B 题意: Ivan plays an old action game called Heretic. ...

  4. Educational Codeforces Round 74 (Rated for Div. 2) A. Prime Subtraction

    链接: https://codeforces.com/contest/1238/problem/A 题意: You are given two integers x and y (it is guar ...

  5. Educational Codeforces Round 74 (Rated for Div. 2)

    传送门 A. Prime Subtraction 判断一下是否相差为\(1\)即可. B. Kill 'Em All 随便搞搞. C. Standard Free2play 题意: 现在有一个高度为\ ...

  6. Educational Codeforces Round 74 (Rated for Div. 2)【A,B,C【贪心】,D【正难则反的思想】】

    A. Prime Subtractiontime limit per test2 secondsmemory limit per test256 megabytesinputstandard inpu ...

  7. Educational Codeforces Round 74 (Rated for Div. 2)补题

    慢慢来. 题目册 题目 A B C D E F G 状态 √ √ √ √ × ∅ ∅ //√,×,∅ 想法 A. Prime Subtraction res tp A 题意:给定\(x,y(x> ...

  8. Educational Codeforces Round 74 (Rated for Div. 2)E(状压DP,降低一个m复杂度做法含有集合思维)

    #define HAVE_STRUCT_TIMESPEC#include<bits/stdc++.h>using namespace std;char s[100005];int pos[ ...

  9. [Educational Codeforces Round 16]E. Generate a String

    [Educational Codeforces Round 16]E. Generate a String 试题描述 zscoder wants to generate an input file f ...

随机推荐

  1. Linux下 sftp服务配置

    查看openssh的版本,使用ssh -V 命令来查看openssh的版本,版本必须大于4.8p1,低于的这个版本需要升级. 参考博客:https://yq.aliyun.com/articles/6 ...

  2. java.lang.NoClassDefFoundError: org/springframework/core/env/EnvironmentCapa

    java.lang.NoClassDefFoundError: org/springframework/core/env/EnvironmentCapa 少导入包!spring-core-*.jar ...

  3. centos7上使用git clone出现问题

    centos 7  git clone时出现不支持协议版本的问题 unable to access 'https://github.com/baloonwj/TeamTalk.git/': Peer ...

  4. FreeRTOS 基础简介

    为什么选择FreeRTOS UCOS资料多,尤其是中文资料.FreeRTOS资料少,而且大多数是英文的.原因如下: 1.FreeRTOS免费!UCOS收费.这是主要原因 2.很多半导体厂商,采用Fre ...

  5. http协议工作原理(精简)

    HTTP协议进行通信时,需要有客户端(即终端用户)和服务端(即Web服务器),在Web客户端向Web服务器发送请求报文之前,先要通过TCP/IP协议在Web客户端和服务器之间建立一个TCP/IP连接 ...

  6. Flink原理(一)——基础架构

    Flink系列博客,基于Flink1.6,打算分为三部分:原理.源码.实例以及API使用分析,后期等系列博客完成后再弄一个目录. 该系列博客是我自己学习过程中的一些理解,若有不正确.不准确的地方欢迎大 ...

  7. C++——异常处理

    前言 大型和十分复杂的程序往往会产生一些很难查找的甚至是无法避免的运行时错误.当发生运行时错误时,不能简单地结束程序运行,而是退回到任务的起点,指出错误,并由用户决定下一步工作.面向对象的异常处理(e ...

  8. 利其器:无法在 ".vscode" 文件夹()内创建 "launch.json" 文件。

    无法在 ".vscode" 文件夹()内创建 "launch.json" 文件. https://www.cnblogs.com/lidabo/p/588899 ...

  9. linux下环境管理anaconda3

    我之前在centos之安装单独python3.6,大家都知道centos自带python2.7,通过输入python,和python3来控制想要使用python2,或者python3,如今想要要在li ...

  10. python_面向对象——属性方法property

    1.属性方法 class Student(object): def __init__(self,name): self.name = name @property #属性方法:把一个方法变成一个静态的 ...