Contest Info


[Practice Link](https://codeforces.com/contest/1238)

Solved A B C D E F G
6/7 O O O O Ø Ø -
  • O 在比赛中通过
  • Ø 赛后通过
  • ! 尝试了但是失败了
  • - 没有尝试

Solutions


A. Prime Subtraction

签到。

B. Kill 'Em All

签到。

C. Standard Free2play

贪心即可。

代码:

view code
#include <bits/stdc++.h>
#define debug(...) { printf("# "); printf(__VA_ARGS__); puts(""); }
#define fi first
#define se second
#define endl "\n"
using namespace std;
using db = double;
using ll = long long;
using ull = unsigned long long;
using pII = pair <int, int>;
using pLL = pair <ll, ll>;
constexpr int mod = 1e9 + 7;
template <class T1, class T2> inline void chadd(T1 &x, T2 y) { x += y; while (x >= mod) x -= mod; while (x < 0) x += mod; }
template <class T1, class T2> inline void chmax(T1 &x, T2 y) { if (x < y) x = y; }
template <class T1, class T2> inline void chmin(T1 &x, T2 y) { if (x > y) x = y; }
inline int rd() { int x; cin >> x; return x; }
template <class T> inline void rd(T &x) { cin >> x; }
template <class T> inline void rd(vector <T> &vec) { for (auto &it : vec) cin >> it; }
inline void pt() { cout << endl; }
template <class T, class... Ts> void pt(const T& arg, const Ts&... args) { cout << arg << " "; pt(args...); }
template <class T> inline void pt(const T &s) { cout << s << "\n"; }
template <class T> inline void pt(const vector <T> &vec) { for (auto &it : vec) cout << it << " "; cout << endl; }
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
inline ll qpow(ll base, ll n) { ll res = 1; while (n) { if (n & 1) res = res * base % mod; base = base * base % mod; n >>= 1; } return res; }
constexpr int N = 2e5 + 10;
int h, n, a[N];
void run() {
cin >> h >> n;
for (int i = 1; i <= n; ++i) cin >> a[i];
if (n == 1) return pt(0);
int res = 0, lst = h;
for (int i = 2; i <= n; ++i) {
if (lst <= a[i]) continue;
lst = a[i] + 1;
if (i == n) {
if (lst >= 3) ++res;
break;
}
if (lst - a[i + 1] >= 3) {
++res;
lst = a[i + 1] + 1;
} else {
lst = a[i + 1];
}
}
pt(res);
} int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr); cout.tie(nullptr);
cout << fixed << setprecision(20);
int _T; cin >> _T;
while (_T--) run();
return 0;
}

D. AB-string

题意:

给出一个字符串\(S\),其字符集只有'A', 'B',现在统计有多少个子串是符合要求的,一个子串是符合要求的当且仅当其中每个字符都属于一个长度大于\(1\)的回文子串中。

思路:

考虑符合要求的串的长度肯定大于等于\(2\),那么只有一种字符是符合要求的。

再考虑,枚举每个左端点,找多少个右端点是符合的。

首先\(AB\)是不符合的,但是\(ABA\),并且后面不管加什么字符都是符合的。

那么\(AAAABA\)后面不管加什么字符都是符合的。

对于首字母是\(B\)的同理考虑即可。

代码:

view code
#include <bits/stdc++.h>
#define debug(...) { printf("# "); printf(__VA_ARGS__); puts(""); }
#define fi first
#define se second
#define endl "\n"
using namespace std;
using db = double;
using ll = long long;
using ull = unsigned long long;
using pII = pair <int, int>;
using pLL = pair <ll, ll>;
constexpr int mod = 1e9 + 7;
template <class T1, class T2> inline void chadd(T1 &x, T2 y) { x += y; while (x >= mod) x -= mod; while (x < 0) x += mod; }
template <class T1, class T2> inline void chmax(T1 &x, T2 y) { if (x < y) x = y; }
template <class T1, class T2> inline void chmin(T1 &x, T2 y) { if (x > y) x = y; }
inline int rd() { int x; cin >> x; return x; }
template <class T> inline void rd(T &x) { cin >> x; }
template <class T> inline void rd(vector <T> &vec) { for (auto &it : vec) cin >> it; }
inline void pt() { cout << endl; }
template <class T, class... Ts> void pt(const T& arg, const Ts&... args) { cout << arg << " "; pt(args...); }
template <class T> inline void pt(const T &s) { cout << s << "\n"; }
template <class T> inline void pt(const vector <T> &vec) { for (auto &it : vec) cout << it << " "; cout << endl; }
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
inline ll qpow(ll base, ll n) { ll res = 1; while (n) { if (n & 1) res = res * base % mod; base = base * base % mod; n >>= 1; } return res; }
constexpr int N = 3e5 + 10;
int n; char s[N];
vector <int> A, B;
void run() {
cin >> (s + 1);
A.clear(); B.clear();
for (int i = 1; i <= n; ++i) {
if (s[i] == 'A') A.push_back(i);
else B.push_back(i);
}
ll res = 0;
for (int i = 1; i < n; ++i) {
if (s[i] == 'A') {
auto nx = upper_bound(B.begin(), B.end(), i);
if (nx == B.end()) {
res += (n - i);
} else if (*nx == i + 1) {
auto nnx = upper_bound(A.begin(), A.end(), *nx);
if (nnx != A.end()) {
res += n - *nnx + 1;
}
} else {
res += n - i - 1;
}
} else {
auto nx = upper_bound(A.begin(), A.end(), i);
if (nx == A.end()) {
res += n - i;
} else if (*nx == i + 1) {
auto nnx = upper_bound(B.begin(), B.end(), *nx);
if (nnx != B.end()) {
res += n - *nnx + 1;
}
} else {
res += n - i - 1;
}
}
}
pt(res);
} int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr); cout.tie(nullptr);
cout << fixed << setprecision(20);
while (cin >> n) run();
return 0;
}

E. Keyboard Purchase

题意:

给出一个字符串\(S\),现在要造一个键盘,这个键盘只有一排键,要敲打这段字符串\(S\),花费是:

\[\begin{eqnarray*}
\sum\limits_{i = 2}^n |pos_{s_{i - 1}} - pos_{s_i}|
\end{eqnarray*}
\]

现在问最小代价,在选择合适的键盘下,键盘上键位是自定的。

思路:

我们考虑拆绝对值,那么对于两个相邻的\((a, b)\),那么我们只需要关心\(pos_a\)是在\(pos_b\)的前面还是后面即可,这样就确定了绝对值中的符号。

那么用\(f[i][j]\)表示前\(i\)个位置,选择的字符二进制状态为\(j\)的最小代价。

那么只需要考虑\(f[i][S]\)转移到\(f[i + 1][S \cup \{v\}] for\;v \notin S\)

代码:

view code
#pragma GCC optimize("Ofast,unroll-loops,no-stack-protector,fast-math")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include <bits/stdc++.h>
#define debug(...) { printf("# "); printf(__VA_ARGS__); puts(""); }
#define fi first
#define se second
#define endl "\n"
using namespace std;
using db = double;
using ll = long long;
using ull = unsigned long long;
using pII = pair <int, int>;
using pLL = pair <ll, ll>;
constexpr int mod = 1e9 + 7;
template <class T1, class T2> inline void chadd(T1 &x, T2 y) { x += y; while (x >= mod) x -= mod; while (x < 0) x += mod; }
template <class T1, class T2> inline void chmax(T1 &x, T2 y) { if (x < y) x = y; }
template <class T1, class T2> inline void chmin(T1 &x, T2 y) { if (x > y) x = y; }
inline int rd() { int x; cin >> x; return x; }
template <class T> inline void rd(T &x) { cin >> x; }
template <class T> inline void rd(vector <T> &vec) { for (auto &it : vec) cin >> it; }
inline void pt() { cout << endl; }
template <class T, class... Ts> void pt(const T& arg, const Ts&... args) { cout << arg << " "; pt(args...); }
template <class T> inline void pt(const T &s) { cout << s << "\n"; }
template <class T> inline void pt(const vector <T> &vec) { for (auto &it : vec) cout << it << " "; cout << endl; }
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
inline ll qpow(ll base, ll n) { ll res = 1; while (n) { if (n & 1) res = res * base % mod; base = base * base % mod; n >>= 1; } return res; }
constexpr int N = 1e5 + 10;
int n, m, w[30][30], f[1 << 21], g[1 << 21][22], num[1 << 21], lg[1 << 21]; char s[N];
void run() {
cin >> (s + 1);
memset(w, 0, sizeof w);
for (int i = 1; i < n; ++i) {
int c = s[i] - 'a', c2 = s[i + 1] - 'a';
if (c == c2) continue;
++w[c][c2];
++w[c2][c];
}
int lim = 1 << m;
memset(g, 0, sizeof g);
for (int i = 1; i < lim; ++i) {
for (int j = 0; j < m; ++j) {
int lb = i & -i;
g[i][j] = g[i ^ lb][j] + w[j][lg[lb]];
}
}
memset(f, 0x3f, sizeof f); f[0] = 0;
for (int i = 0; i < lim; ++i) {
for (int j = 0; j < m; ++j) {
if (!((i >> j) & 1)) {
int pos = num[i] + 1;
chmin(f[i ^ (1 << j)], f[i] + g[i][j] * pos - g[(lim - 1) ^ i ^ (1 << j)][j] * pos);
}
}
}
pt(f[lim - 1]);
} int main() {
memset(num, 0, sizeof num);
for (int i = 1; i < 1 << 20; ++i)
num[i] = num[i ^ (i & -i)] + 1;
memset(lg, 0, sizeof lg);
lg[0] = -1; lg[1] = 0;
for (int i = 2; i < 1 << 20; i <<= 1) lg[i] = lg[i >> 1] + 1;
ios::sync_with_stdio(false);
cin.tie(nullptr); cout.tie(nullptr);
cout << fixed << setprecision(20);
while (cin >> n >> m) run();
return 0;
}

F. The Maximum Subtree

题意:

定义一张图是合法的当且仅当,每个点表示一个一维数轴上的线段的时候,两个点有边当且仅当他们表示的线段有交集。

现在给出一棵树,问最多选择多少个点构成的子树是合法的。

思路:

多\(wa\)几发就可以发现一个点如果之和父亲有边,那么这种点是随便加的。

那么对于一个点如果它和儿子连了边,那么它要和其父亲连边,那么其父亲最多连这样的点两个,并且其父亲是根。

然后再用每个点的子树的最大值更新答案。

代码:

view code
#include <bits/stdc++.h>
#define debug(...) { printf("# "); printf(__VA_ARGS__); puts(""); }
#define fi first
#define se second
#define endl "\n"
using namespace std;
using db = double;
using ll = long long;
using ull = unsigned long long;
using pII = pair <int, int>;
using pLL = pair <ll, ll>;
constexpr int mod = 1e9 + 7;
template <class T1, class T2> inline void chadd(T1 &x, T2 y) { x += y; while (x >= mod) x -= mod; while (x < 0) x += mod; }
template <class T1, class T2> inline void chmax(T1 &x, T2 y) { if (x < y) x = y; }
template <class T1, class T2> inline void chmin(T1 &x, T2 y) { if (x > y) x = y; }
inline int rd() { int x; cin >> x; return x; }
template <class T> inline void rd(T &x) { cin >> x; }
template <class T> inline void rd(vector <T> &vec) { for (auto &it : vec) cin >> it; }
inline void pt() { cout << endl; }
template <class T, class... Ts> void pt(const T& arg, const Ts&... args) { cout << arg << " "; pt(args...); }
template <class T> inline void pt(const T &s) { cout << s << "\n"; }
template <class T> inline void pt(const vector <T> &vec) { for (auto &it : vec) cout << it << " "; cout << endl; }
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
inline ll qpow(ll base, ll n) { ll res = 1; while (n) { if (n & 1) res = res * base % mod; base = base * base % mod; n >>= 1; } return res; }
constexpr int N = 3e5 + 10;
int n, f[N], rt, res;
vector <vector<int>> G;
void dfs(int u, int fa) {
int Max[2] = {0, 0};
int sons = 0;
for (auto &v : G[u]) {
if (v == fa) continue;
++sons;
dfs(v, u);
if (f[v] > Max[0]) {
swap(Max[0], Max[1]);
Max[0] = f[v];
} else if (f[v] > Max[1]) Max[1] = f[v];
}
if (u != rt) {
f[u] = Max[0] + 1 + max(0, sons - 1);
chmax(res, Max[0] + Max[1] + 1 + max(0, sons - 1));
} else {
f[u] = Max[0] + Max[1] + 1 + max(0, sons - 2);
chmax(res, f[u]);
}
}
void run() {
cin >> n;
memset(f, 0, sizeof (f[0]) * (n + 10));
G.clear(); G.resize(n + 1);
for (int i = 1, u, v; i < n; ++i) {
cin >> u >> v;
G[u].push_back(v);
G[v].push_back(u);
}
rt = 1; res = 0;
for (int i = 2; i <= n; ++i) {
if (G[i].size() > 1) {
rt = i;
break;
}
}
dfs(rt, rt);
pt(res);
} int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr); cout.tie(nullptr);
cout << fixed << setprecision(20);
int _T; cin >> _T;
while (_T--) run();
return 0;
}

Educational Codeforces Round 74的更多相关文章

  1. Educational Codeforces Round 74 (Rated for Div. 2) D. AB-string

    链接: https://codeforces.com/contest/1238/problem/D 题意: The string t1t2-tk is good if each letter of t ...

  2. Educational Codeforces Round 74 (Rated for Div. 2) C. Standard Free2play

    链接: https://codeforces.com/contest/1238/problem/C 题意: You are playing a game where your character sh ...

  3. Educational Codeforces Round 74 (Rated for Div. 2) B. Kill 'Em All

    链接: https://codeforces.com/contest/1238/problem/B 题意: Ivan plays an old action game called Heretic. ...

  4. Educational Codeforces Round 74 (Rated for Div. 2) A. Prime Subtraction

    链接: https://codeforces.com/contest/1238/problem/A 题意: You are given two integers x and y (it is guar ...

  5. Educational Codeforces Round 74 (Rated for Div. 2)

    传送门 A. Prime Subtraction 判断一下是否相差为\(1\)即可. B. Kill 'Em All 随便搞搞. C. Standard Free2play 题意: 现在有一个高度为\ ...

  6. Educational Codeforces Round 74 (Rated for Div. 2)【A,B,C【贪心】,D【正难则反的思想】】

    A. Prime Subtractiontime limit per test2 secondsmemory limit per test256 megabytesinputstandard inpu ...

  7. Educational Codeforces Round 74 (Rated for Div. 2)补题

    慢慢来. 题目册 题目 A B C D E F G 状态 √ √ √ √ × ∅ ∅ //√,×,∅ 想法 A. Prime Subtraction res tp A 题意:给定\(x,y(x> ...

  8. Educational Codeforces Round 74 (Rated for Div. 2)E(状压DP,降低一个m复杂度做法含有集合思维)

    #define HAVE_STRUCT_TIMESPEC#include<bits/stdc++.h>using namespace std;char s[100005];int pos[ ...

  9. [Educational Codeforces Round 16]E. Generate a String

    [Educational Codeforces Round 16]E. Generate a String 试题描述 zscoder wants to generate an input file f ...

随机推荐

  1. 前端require代码抽离小技巧

    DEMO 文件目录结构 plugin.js // /CommonJS规范 // var exports = module.exports; exports.test = function () { c ...

  2. 优秀的java 社区

    并发编程网 - ifeve.com InfoQ - 促进软件开发领域知识与创新的传播开源中国 - 找到您想要的开源项目,分享和交流IBM developerWorks 中国 : IBM's resou ...

  3. 解决阿里云OSS The requested bucket name is not available的办法

    今天在创建Bucket的时候遇到了这个问题 The requested bucket name is not available. The bucket namespace is shared by ...

  4. HTTP抓包实战

    HTTP:超文本传输协议 允许将HTTP文档从Web服务器传送到客户端的浏览器.HTTP请求报文分为3部分.第一部分叫做起始行(Request line).第二部分叫首部(Request Header ...

  5. 1-JavaScript变量

    对于JS的变量这个环节,其实主要要了解一下JS数据类型的存储方法 JS有两种不同的数据类型:基本类型(原始类型),引用类型(对象类型). 1.栈 (stack) 和 堆 (heap) 栈 (stack ...

  6. deploy KBA 2167993

    The default trace shows the following error: ****************************************** Unable to cr ...

  7. Windows Server 2012 R2上安装.Net4.6.1出错

    在Windows Server 2012 R2上安装.Net4.6.1时提示“你需要先安装对应于 KB2919355 的更新,然后才可在……”解决方式: 在官网下载更新包,下载地址:https://w ...

  8. Python函数Day6

    一.内置函数 list() 将一个可迭代对象转化为列表 字典转为列表:会将所有键转化为列表 字符串转为列表:键每个字符转化为列表 s = 'abc' dic = {'a':1,'b':2,'c':3} ...

  9. Mongodb数据存储优缺点

    相对于Mysql来说 在项目设计的初期,我当时有了这样的想法,同时也是在满足下面几个条件的情况下来选择最终的nosql方案的: 1.需求变化频繁:开发要更加敏捷,开发成本和维护成本要更低,要能够快速地 ...

  10. [Python]pip install offline 如何离线pip安装包

    痛点:目标机器无法连接公网,但是能使用rz.sz传输文件 思路:在能上网的机器是使用pip下载相关依赖包,然后传输至目标机器,进行安装 0. Install pip: http://pip-cn.re ...