旅行商问题

BTBU-JY143班共有30位同学,来自22个地区,我们希望在假期来一次说走就走的旅行,将所有同学的家乡走一遍。算起来,路费是一笔很大的花销,所以希望设计一个旅行方案,确保这一趟走下来的总路程最短。

旅行商问题是一个经典的NP问题

NP就是Non-deterministic Polynomial,即多项式复杂程度的非确定性问题,是世界七大数学难题之一。

如果使用枚举法求解,22个地点共有:

(22-1)!/2 = **25545471085854720000 **种路线方案

GA算法

遗传算法将“优胜劣汰,适者生存”的生物进化原理引入优化参数形成的编码串联群体中,按所选择的适应度函数并通过遗传中的复制、交叉及变异对个体进行筛选,使适应度高的个体被保留下来,组成新的群体,新的群体既继承了上一代的信息,又优于上一代。这样周而复始,群体中个体适应度不断提高,直到满足一定的条件。遗传算法的算法简单,可并行处理,并能到全局最优解。

GA算法设计

1.生成原始染色体种群

采用实数编码,以N个城市的序号作为一条可能的路径。 例如对8个城市,可生成如下的染色体代表一条路径,8,6,4,2,7,5,3,1.重复操作生成数目等于n的染色体种群。

2.生成适应度函数

由于是求最短路径,适应度函数一般求函数最大值,所以取路径总长度T的倒数,即fitness=1/T。

3.选择染色体

采用轮盘赌的方式产生父代染色体。

4.对染色体种群进行编码

假设有一个含有九个城市的列表:W=(A,B,C,D,E,F,G,H,I)。

有如下两条路线:

W1=(A,D,B,H,F,I,G,E,C)

W2=(B,C,A,D,E,H,I,F,G)

则这两条路线可编码为:

W1=(142869753)

W2=(231458967)

5.交叉

以概率Pc选择参加交叉的个体(偶数个),用两点交叉算子进行操作。

例如对于下面两个染色体个体

(1 3 4 | 5 2 9 | 8 6 7)

(1 7 6 | 9 5 2 | 4 3 8)

通过两点交叉可得到子代染色体为

(1 3 4 | 9 5 2 | 8 6 7)

(1 7 6 | 5 2 9 | 4 3 8)

6.变异

以概率Pm选择参加变异的个体,用对换变异进行操作。随机的选择个体中的两个位点,进行交换基因。

如A=123456789;如果对换点为4和7,则经过对换后为B=123756489

7.解码

对染色体进行解码,恢复染色体的实数表示方法。

8.逐代进化

根据得出的新的染色体,再次返回选择染色体的步骤,进行迭代,直到达到迭代次数,算法停止。

算法实现##

#加载packages
library(sp)
library(maptools)
library(geosphere) source("C:\\Users\\ShangFR\\Desktop\\路径优化\\GA算法脚本.R")
data=read.csv("C:\\Users\\ShangFR\\Desktop\\路径优化\\143地理坐标.csv") #读取城市经纬度数据
border <- readShapePoly("C:\\Users\\ShangFR\\Desktop\\路径优化\\map\\bou2_4p.shp") #读取各省的边界数据等 #初始化(列出地区距离矩阵-聚类)
da=data[,1:2]
rownames(da)=data[,3]
hc=hclust(dist(da))
cutree(hc, h = 10)
plot(hc) route=CreatDNA(data,5)
x = route[,1]
y = route[,2]
z = route[,3]
cols=route[,4] muer.lonlat = cbind(route[,1],route[,2]) # matrix muer.dists = distm(muer.lonlat, fun=distVincentyEllipsoid) # 精确计算,椭圆 ans=round(muer.dists/1000,2)
roundots = list(x=x,y=y,ans=ans,z=z,cols=cols)
species = GA4TSP(dots=roundots,initDNA=NULL,N=50,cp=0.1,vp=0.01,maxIter=1000,maxStay=100,maxElite=2,drawing=TRUE)

最优路径可视化


[此图基于百度Echarts](http://echarts.baidu.com/)

详细介绍

GA算法脚本


-->


反馈与建议


感谢您阅读这份文档,分享。

GA算法-R语言实现的更多相关文章

  1. PageRank算法R语言实现

    PageRank算法R语言实现 Google搜索,早已成为我每天必用的工具,无数次惊叹它搜索结果的准确性.同时,我也在做Google的SEO,推广自己的博客.经过几个月尝试,我的博客PR到2了,外链也 ...

  2. 数据挖掘算法R语言实现之决策树

    数据挖掘算法R语言实现之决策树 最近,看到很多朋友问我如何用数据挖掘算法R语言实现之决策树,想要了解这方面的内容如下: > library("party")导入数据包 > ...

  3. R语言︱情感分析—基于监督算法R语言实现(二)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:本文大多内容来自未出版的<数据 ...

  4. 一个简单文本分类任务-EM算法-R语言

    一.问题介绍 概率分布模型中,有时只含有可观测变量,如单硬币投掷模型,对于每个测试样例,硬币最终是正面还是反面是可以观测的.而有时还含有不可观测变量,如三硬币投掷模型.问题这样描述,首先投掷硬币A,如 ...

  5. 模拟退火算法 R语言

    0 引言 模拟退火算法是用来解决TSP问题被提出的,用于组合优化. 1 原理 一种通用的概率算法,用来在一个打的搜索空间内寻找命题的最优解.它的原理就是通过迭代更新当前值来得到最优解.模拟退火通常使用 ...

  6. R语言 常见模型

    转自 雪晴网 [R]如何确定最适合数据集的机器学习算法 抽查(Spot checking)机器学习算法是指如何找出最适合于给定数据集的算法模型.本文中我将介绍八个常用于抽查的机器学习算法,文中还包括各 ...

  7. R语言︱情感分析—词典型代码实践(最基础)(一)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:词典型情感分析对词典要求极高,词典中 ...

  8. Rserve详解,R语言客户端RSclient【转】

    R语言服务器程序 Rserve详解 http://blog.fens.me/r-rserve-server/ Rserve的R语言客户端RSclient https://blog.csdn.net/u ...

  9. 用GA算法设计22个地点之间最短旅程-R语言实现

    数据挖掘入门与实战  公众号: datadw 相关帖子 转载︱案例 基于贪心算法的特征选择 用GA算法设计22个地点之间最短旅程-R语言实现 ----------------------------- ...

随机推荐

  1. 【VC++技术杂谈008】使用zlib解压zip压缩文件

    最近因为项目的需要,要对zip压缩文件进行批量解压.在网上查阅了相关的资料后,最终使用zlib开源库实现了该功能.本文将对zlib开源库进行简单介绍,并给出一个使用zlib开源库对zip压缩文件进行解 ...

  2. bootstrap-popover的配置与灵活应用

    首先罗列一下配置参数: 1.animation true/false 是否动画 2.placement 'right'/'left'/top/bottom/function(){return 'rig ...

  3. 前端编码规范之JavaScript

    上次浅谈了下关于CSS的编码规范,大部分童鞋持赞同意见,仍存在一些童鞋不太理解这些规范的意义. 如果是个人或者小作坊开发,其实这些所谓的编码规范也没啥意思,因为大家写好的代码直接就给扔到网上去了,很少 ...

  4. Atitit GRASP(General Responsibility Assignment Software Patterns),中文名称为“通用职责分配软件模式”

    Atitit GRASP(General Responsibility Assignment Software Patterns),中文名称为"通用职责分配软件模式" 1. GRA ...

  5. Atitit图像处理的用途

    Atitit图像处理的用途 1.1. 分类识别 (人脸检测,肤色识别,人类检测:1 1.2. 炫丽的动态按钮生成:色相旋转+自己的草书等图片合成,图片自动裁剪1 1.3. 集成调用自绘gui接口:识别 ...

  6. Atitit sql计划任务与查询优化器--统计信息模块

    Atitit sql计划任务与查询优化器--统计信息模块 每一个统计信息的内容都包含以上三部分的内容. 我们依次来分析下,通过这三部分内容SQL Server如何了解该列数据的内容分布的. a.统计信 ...

  7. Script component 用法

    在SSIS中,可以使用C#编写脚本,这是十分激动人心的事,能够使用C#代码,使得Script Component无所不能. 第一部分:组件简介Script Component 有三种类型:Source ...

  8. MySQL学习笔记十五:优化(2)

    一.数据库性能评测关键指标 1.IOPS:每秒处理的IO请求次数,这跟磁盘硬件相关,DBA不能左右,但推荐使用SSD. 2.QPS:每秒查询次数,可以使用show status或mysqladmin ...

  9. MonoGame 3.2 下,截屏与 Texture2D 的保存

    10月20日注:后来发现了这篇博文(英文),XNA 中的 Color 实际上是与 Alpha 值自左乘(premultiplied)的,这也解释了直接用 0xARGB 转译而颜色异常的原因. 注意,由 ...

  10. BOM详解

    1.WINDOW对象 BOM的核心对象是WINDOW,它表示一个浏览器的实例.在浏览器中,window对象有双重角色,它既是通过 JavaScript访问浏览器的一个接口,又是ECMAScript规定 ...