Leetcode之动态规划(DP)专题-413. 等差数列划分(Arithmetic Slices)
Leetcode之动态规划(DP)专题-413. 等差数列划分(Arithmetic Slices)
如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列。
例如,以下数列为等差数列:
1, 3, 5, 7, 9
7, 7, 7, 7
3, -1, -5, -9
以下数列不是等差数列。
1, 1, 2, 5, 7
数组 A 包含 N 个数,且索引从0开始。数组 A 的一个子数组划分为数组 (P, Q),P 与 Q 是整数且满足 0<=P<Q<N 。
如果满足以下条件,则称子数组(P, Q)为等差数组:
元素 A[P], A[p + 1], ..., A[Q - 1], A[Q] 是等差的。并且 P + 1 < Q 。
函数要返回数组 A 中所有为等差数组的子数组个数。
示例:
A = [1, 2, 3, 4] 返回: 3, A 中有三个子等差数组: [1, 2, 3], [2, 3, 4] 以及自身 [1, 2, 3, 4]。
DP含义:dp[i]表示从开始到数组i的位置处,是等差数组的最大值。
分析:
A = [1,2,3,4,5] dp[2]=1 等差数列有:[1,2,3];
那么dp[3]等于多少呢?我们发现dp[3] = dp[2] + 1 = 2;
新增出来的2个等差数列有:[2,3,4] [1,2,3,4]、
那么dp[4]等于多少呢? dp[4] = dp[3] + 1 = 3;
新增了3个等差数列:[3,4,5] [2,3,4,5] [1,2,3,4,5]
....
以此类推
.... 所以我们可以写出状态转移方程:
if(是等差数列) dp[i] = dp[i-1]+1; 如何判断等差数列呢?
举个例子:1 2 3 是等差数列,再加入一个4,只要他们方差相同,就也是等差数列
所以利用方差相同A[i] - A[i-1] == A[i-1] - A[i-1] 来判断就可以了。
class Solution {
public int numberOfArithmeticSlices(int[] A) {
if(A.length==0 || A==null) return 0;
if(A.length <= 2) return 0;
int[] dp = new int[A.length];
dp[2] = 1;
int res = 0;
for (int i = 2; i < A.length; i++) {
if(A[i]-A[i-1]==A[i-1]-A[i-2]){
dp[i] = dp[i-1] + 1;
res += dp[i];
}
}
return res;
}
}
Leetcode之动态规划(DP)专题-413. 等差数列划分(Arithmetic Slices)的更多相关文章
- [Swift]LeetCode413. 等差数列划分 | Arithmetic Slices
A sequence of number is called arithmetic if it consists of at least three elements and if the diffe ...
- Java实现 LeetCode 413 等差数列划分
413. 等差数列划分 如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列. 例如,以下数列为等差数列: 1, 3, 5, 7, 9 7, 7, 7, 7 3, -1, - ...
- Leetcode 413.等差数列划分
等差数列划分 如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列. 例如,以下数列为等差数列: 1, 3, 5, 7, 9 7, 7, 7, 7 3, -1, -5, -9 ...
- Leetcode——413. 等差数列划分
题目描绘:题目链接 题目中需要求解一个数组中等差数组的个数,这个问题可以利用动态规划的思路来分析. 三步骤: 1:问题归纳.题目需要求解等差数列的和,我们可以用一个数组保存前i个元素可以构成的等差数列 ...
- 动态规划dp专题练习
貌似开坑还挺好玩的...开一个来玩玩=v=... 正好自己dp不是很熟悉,就开个坑来练练吧...先练个50题?小目标... 好像有点多啊QAQ 既然是开坑,之前写的都不要了! 50/50 1.洛谷P3 ...
- Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)
Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...
- Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings)
Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings) 给定一个字符串,你的任务是计算这个字符串中有多少个回文子串. 具有不同开始位置或结束位置的子 ...
- Leetcode之动态规划(DP)专题-474. 一和零(Ones and Zeroes)
Leetcode之动态规划(DP)专题-474. 一和零(Ones and Zeroes) 在计算机界中,我们总是追求用有限的资源获取最大的收益. 现在,假设你分别支配着 m 个 0 和 n 个 1. ...
- Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner)
Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner) 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端 ...
随机推荐
- Python之抓取网页元素
import urllib.request from bs4 import BeautifulSoup url = "http://www.wal-martchina.com/walmart ...
- 解决telnet: connect to address 127.0.0.1: Connection refused的错误信息问题
1.检查telnet是否已安装: rpm -qa telnet 2.有输出说明已安装,如果没有输出则没有安装,使用yum install telnet进行安装 3.检查telnet-server是否已 ...
- nginx负载均衡 页面缓存
nginx的upstream目前支持4种方式的分配 1.轮询(默认) 每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除. 2.weight 指定轮询几率,weight ...
- Primes and Multiplication
C - Primes and Multiplication 思路:找到x的所有质数因子,用一个vector储存起来,然后对于每一个质因子来说,我们要找到它对最后的答案的贡献的大小,即要找到它在最后的乘 ...
- 【知识库】-数据库_MySQL常用SQL语句语法大全示例
简书作者:seay 文章出处: 关系数据库常用SQL语句语法大全 Learn [已经过测试校验] 一.创建数据库 二.创建表 三.删除表 四.清空表 五.修改表 六.SQL查询语句 七.SQL插入语句 ...
- flask 第八篇 实例化flask时的参数配置
Flask 是一个非常灵活且短小精干的web框架 , 那么灵活性从什么地方体现呢? 有一个神奇的东西叫 Flask配置 , 这个东西怎么用呢? 它能给我们带来怎么样的方便呢? 首先展示一下: from ...
- Java集成POI进行Excele的导入导出,以及报错: java.lang.AbstractMethodError..........
报错信息如下 java.lang.AbstractMethodError: org.apache.poi.xssf.usermodel.XSSFCell.setCellType(Lorg/apache ...
- SpringBoot的文件上传&下载
前言:不多BB直接上代码 文件上传 pom依赖添加commons-io <!-- 上传/下载jar https://mvnrepository.com/artifact/commons-io/c ...
- Python 之 subprocess模块
一.subprocess以及常用的封装函数运行python的时候,我们都是在创建并运行一个进程.像Linux进程那样,一个进程可以fork一个子进程,并让这个子进程exec另外一个程序.在Python ...
- LeetCode 143. 重排链表(Reorder List)
题目描述 给定一个单链表 L:L0→L1→…→Ln-1→Ln , 将其重新排列后变为: L0→Ln→L1→Ln-1→L2→Ln-2→… 你不能只是单纯的改变节点内部的值,而是需要实际的进行节点交换. ...