[bzoj4368][IOI2015]boxes纪念品盒_动态规划_单调队列_贪心
bzoj4368 IOI2015 boxes纪念品盒
题目链接:https://lydsy.com/JudgeOnline/problem.php?id=4368
数据范围:略。
题解:
如果在一个最优方案中,一个点$i$是这个人拿东西从左侧走过来的,我们就说这个点是蓝的。
如果是右侧的,就说这个点是红。
我们发现,并不存在三个可以不连续的点,满足红蓝红。
即,一定存在一个点$i$,满足$1\sim i$的点是蓝的,$i + 1\sim n$是红的。
接着我们维护一个$dp$状态:$f_i$,表示从$0$开始,把$1\sim i$都从左侧删掉并且回到原点的最小代价;$g_i$表示右侧的最小代价。
考虑$f$怎么转移?
显然,$f_i = min\{ f_j \} (i-j\le k)+a_i+min(a_i, L - a_i)$。
这个可以用线段树啊树状数组什么的优化。但是因为$n$是$10^7$,所以我们用单调队列即可。
代码:
#include <bits/stdc++.h>
#define setIO(s) freopen(s".in", "r", stdin), freopen(s".out", "w", stdout)
#define N 10000010
using namespace std;
typedef long long ll;
char *p1, *p2, buf[100000];
#define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1 ++ )
int rd() {
int x = 0;
char c = nc();
while (c < 48) {
c = nc();
}
while (c > 47) {
x = (((x << 2) + x) << 1) + (c ^ 48), c = nc();
}
return x;
}
int q[N], a[N];
ll dis[N], f[N], g[N];
int main() {
// setIO("box");
int n = rd(), k = rd(), L = rd();
for (int i = 1; i <= n; i ++ ) {
a[i] = rd();
dis[i] = min(a[i], L - a[i]);
}
int head = 1, tail = 0;
q[ ++ tail] = 0;
for (int i = 1; i <= n; i ++ ) {
f[i] = f[q[head]] + a[i] + dis[i];
while (head <= tail && f[i] < f[q[tail]])
tail -- ;
while (head <= tail && i - q[head] >= k) {
head ++ ;
}
q[ ++ tail] = i;
}
head = 1, tail = 0;
q[ ++ tail] = n + 1;
for (int i = n; i; i -- ) {
g[i] = g[q[head]] + L - a[i] + dis[i];
while (head <= tail && g[i] < g[q[tail]]) {
tail -- ;
}
while (head <= tail && q[head] - i >= k) {
head ++ ;
}
q[ ++ tail] = i;
}
// for (int i = 0; i <= n + 1; i ++ ) {
// printf("%d : %lld %lld\n", i, f[i], g[i]);
// }
ll ans = 0x3f3f3f3f3f3f3f3fll;
for (int i = 0; i <= n; i ++ ) {
ans = min(ans, f[i] + g[i + 1]);
}
cout << ans << endl ;
}
[bzoj4368][IOI2015]boxes纪念品盒_动态规划_单调队列_贪心的更多相关文章
- 题解 [BZOJ4368][IOI2015]boxes纪念品盒
题面 解析 可以发现,发纪念品有三种方式: 从左边走再原路返回. 从右边走再原路返回. 走一圈. 注意到,第三种走法最多只会走一次, 因为如果走了多次,那发放的物品数量就会>=\(2k\), 那 ...
- 4368: [IOI2015]boxes纪念品盒
4368: [IOI2015]boxes纪念品盒 链接 分析 链接 代码 #include<bits/stdc++.h> using namespace std; typedef long ...
- IOI2015 boxes纪念品盒
BZOJ 4368: [IOI2015]boxes纪念品盒 BZOJ传送门 Description IOI2015开幕式正在进行最后一个环节.按计划在开幕式期间,每个代表队都将收到由主办方发放的一个装 ...
- [BZOJ] IOI2015 Boxes纪念品盒
问题描述 IOI2015 开幕式正在进行最后一个环节.按计划在开幕式期间,每个代表队都将收到由主办方发放的一个装有纪念品的盒子.然而所有志愿者都被精彩的开幕式所吸引,除 Aman外其他人完全忘记了发放 ...
- BZOJ 4368: [IOI2015]boxes纪念品盒
三种路径,左边出去左边回来,右边出去右边回来,绕一圈 绕一圈的路径最多出现一次 那么绕一圈的路径覆盖的点一定是左边半圈的右边和右边半圈的左边 枚举绕一圈的路径的起始点(一定要枚举,这一步不能贪心),更 ...
- BZOJ 4368: [IOI2015]boxes纪念品盒 贪心
题意:给定一个环,环上有一些点包裹,你要从 $0$ 号点出发,然后每次带上一个容量为 $k$ 的背包. 问:如果要把所有的包裹都带回 $0$ 好点最少要走多少距离. 每一次只有 $3$ 种走法:走整圆 ...
- 【BZOJ2442】修建草坪(动态规划,单调队列)
[BZOJ2442]修建草坪(动态规划,单调队列) 题面 权限题..洛谷 题解 设\(f[i]\)表示前\(i\)个里面选出来的最大值 转移应该比较显然 枚举一个断点的位置,转移一下就好 \(f[i] ...
- 【BZOJ1855】股票交易(动态规划,单调队列)
[BZOJ1855]股票交易(动态规划,单调队列) 题面 BZOJ 题解 很显然,状态之和天数以及当天剩余的股票数有关 设\(f[i][j]\)表示第\(i\)天进行了交易,剩余股票数为\(j\)的最 ...
- 【CF1133E】K Balanced Teams(动态规划,单调队列)
[CF1133E]K Balanced Teams(动态规划,单调队列) 题面 CF 让你把一堆数选一些出来分成不超过\(K\)组,每一组里面的最大值和最小值之差不超过\(5\),求最多有多少个人元素 ...
随机推荐
- 当margin和padding的值是百分比时,如何计算
对元素的margin设置百分数时,百分数是相对于自身包含块的width计算(包含块传送门),不管是margin-top/margin-bottom还是margin-left/margin-right. ...
- [Luogu] 树链剖分
模板题,对于对为某个点为根的子树进行处理时,只需每个节点记录两个值 分别为搜索以该节点为根的子树时的最初搜索序和最末搜索序,将这两 个数作为线段树区间操作的端点进行操作 #include <bi ...
- Codeforces Round #528 (Div. 2)题解
Codeforces Round #528 (Div. 2)题解 A. Right-Left Cipher 很明显这道题按题意逆序解码即可 Code: # include <bits/stdc+ ...
- selenium + chromeDriver的ip代理设置
from selenium import webdriver from selenium.webdriver.chrome.options import Options import zipfile ...
- int(“1.6”),int(1.6)输出结果?
>>> int("1.6") Traceback (most recent call last): File , in <module> ValueE ...
- FOI 冬令营 Day6
目录 T1.堆(heap) 传送门 Code T2.密文(secret) 传送门 Code T3.树(tree) 传送门 Code 别问Day5到底去哪里了,咕咕咕 T1.堆(heap) 传送门 Co ...
- 国内Archlinux arm的镜像源
清华 http://mirrors.tuna.tsinghua.edu.cn/archlinuxarm/arch/arch/repo 中科大 http://mirrors.ustc.edu.cn/ar ...
- Synchronized 原理
1.同步代码块: 反编译结果: monitorenter : 每个对象有一个监视器锁(monitor).当monitor被占用时就会处于锁定状态,线程执行monitorenter指令时尝试获取moni ...
- Java核心复习——synchronized
一.概念 利用锁机制实现线程同步,synchronized关键字的底层交由了JVM通过C++来实现 Java中的锁有两大特性: 互斥性 同一时间,只允许一个线程持有某个对象锁. 可见性 锁释放前,线程 ...
- Java-JUC(零):Java:现有线程T1/T2/T3,如何确保T1执行完成之后执行T2,T3在T2执行完成之后执行。
要实现多个线程执行完成先后,就要知道如何实现线程之间的等待,java线程等待实现是join.java的jdk中join方法实现如下: public final synchronized void jo ...