Problem Description

给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度. 
回文就是正反读都是一样的字符串,如aba, abba等

Input

输入有多组case,不超过120组,每组输入为一行小写英文字符a,b,c...y,z组成的字符串S 
两组case之间由空行隔开(该空行不用处理) 
字符串长度len <= 110000

Output

每一行一个整数x,对应一组case,表示该组case的字符串中所包含的最长回文长度.

Sample Input

aaaa

abab

Sample Output

4
3

先看代码:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define maxx 101000
char s[maxx],s1[maxx*];
int mp[maxx*];
void Manacher(int l)
{
int k=;
s1[k++]='$';s1[k++]='#';
for(int i=;i<l;i++)
{
s1[k++]=s[i];
s1[k++]='#';
}
s1[k]=;
int mx=,id=;
for(int i=;i<k;i++)
{
mp[i]=mx>i?min(mp[*id-i],mx-i):;
while(s1[i+mp[i]]==s1[i-mp[i]])
mp[i]++;
if(i+mp[i]>mx)
{
mx=i+mp[i];
id=i;
}
}
}
int main()
{
while(~scanf("%s",s))
{
int l=strlen(s);
int ans=;
Manacher(l);
for(int i=;i<*l+;i++)
ans=max(ans,mp[i]-);
cout<<ans<<endl;
}
return ;
}

思路:

代码虽不长,主要需要理解的就是:

mp[i]=mx>i?min(mp[2*id-i],mx-i):1;

一般想法都是从1开始慢慢向两边移动来试探,而马拉车主要就是优化了每次试探P[i]的时候不一定需要从1开始,P[i]代表当前下标i为中心的字符串的回文串半径。

下图中 j 点代表是 i 关于 id 的对称点 ,j=2*id-i;

mx的对称点            j                 id                   i                 mx

id表示的就是最长回文串的中心,从图观察i与j关于Id对称,i是从2开始枚举过来已经经过了j的位置,那么j位置的最长回文串就可以确定了,如图所示;如果回文串完全被id的回文串所包围,那么根据对称原理i点的回文串的长度最少就是j点回文串的长度。即如果回文串的子串也是回文串,那么这个子串关于主串中心对称而得的子串也是一个回文串。接下来要确定的就是通过j点所能确定的i点回文串的长度最多是多少。首先应该明确,如果i点跑到mx(id点回文串所确定的范围边界)外面去了,那么j点无论如何缩减范围都不可能是id回文串的子串,就不满足上面加粗的结论了。就一定只能从1开始慢慢试探。这就是当mx  < i的时候,MP[i] = 1的原因了。

还有两种情况

一种就是上图中,j所确定的回文串完全被包含,即整个串都是其子串。那么i的可确定回文串范围就是j的回文串范围,MP[i]就变成了MP[j]。

还有一种情况就是j的回文串已经超出了mx的范围

mx的对称点            j                 id                     i              mx

对于绿线以外的区域完全未知,所以必须将MP[j]减去红线外的范围才是i的可确定范围。或者理解为只有两端都去掉外面的部分之后,剩下的才是id回文串的子串,才可以对称过去成为i的回文串。然后再在已确定的范围基础上向两边扩展。

最长回文 HDU - 3068(马拉车算法)的更多相关文章

  1. (最长回文串 模板) 最长回文 -- hdu -- 3068

    http://acm.hdu.edu.cn/showproblem.php?pid=3068 最长回文 Time Limit: 4000/2000 MS (Java/Others)    Memory ...

  2. 最长回文子串 —— Manacher (马拉车) 算法

    最长回文子串 回文串就是原串和反转字符串相同的字符串.比如 aba,acca.前一个是奇数长度的回文串,后一个是偶数长度的回文串. 最长回文子串就是一个字符串的所有子串中,是回文串且长度最长的子串. ...

  3. 最长回文 HDU - 3068 manacher 模板题

    题意:找串的最长回文字串(连续) 题解:manacher版题 一些理解:首位加上任意两个字符是为了判断边界. 本算法主要是为了 1.省去奇偶分类讨论. 2.防止形如aaaaaaa的串使得暴力算法蜕化为 ...

  4. 最长回文 HDU 3068 (裸的Manacher)

    直接看代码: ============================================================================================= ...

  5. Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)

    Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...

  6. 最长回文子串的Manacher算法

    对于一个比较长的字符串,O(n^2)的时间复杂度是难以接受的.Can we do better? 先来看看解法2存在的缺陷. 1) 由于回文串长度的奇偶性造成了不同性质的对称轴位置,解法2要对两种情况 ...

  7. 最长回文子串(Manacher算法)

    回文字符串,想必大家不会不熟悉吧? 回文串会求的吧?暴力一遍O(n^2)很简单,但当字符长度很长时便会TLE,简单,hash+二分搞定,其复杂度约为O(nlogn), 而Manacher算法能够在线性 ...

  8. 51nod1089(最长回文子串之manacher算法)

    题目链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1089 题意:中文题诶~ 思路: 我前面做的那道回文子串的题 ...

  9. 求最长回文子串:Manacher算法

    主要学习自:http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-ii.html 问题描述:回文字符串就是左右 ...

随机推荐

  1. 2D动画如何做出3D体积感

    https://cowlevel.net/article/1959026 <AngerForce>幕后故事 这篇文章是个老坑,最近有时间开始写,也是对之前项目的一个总结和记录吧. 本篇文章 ...

  2. iOS测试-如何指标量化app耗电量和性能XCTest Metrics

    对于app端的专项测试,Android端我们可以用adb或者一些三方工具进行(例如itest)进行实时的性能监控,iOS端的话也可以用用一些三方的工具,但是需要嵌入到我们的项目当中,今天来介绍下Xco ...

  3. python 安装 pyHook

    下载网站:https://www.lfd.uci.edu/~gohlke/pythonlibs/#pyhook 查看python版本 C:\Users\k\Desktop\file_trans> ...

  4. P5149 会议座位

    P5149 会议座位 题意: 其实还是求逆序对数. 解法: 用离散化统计每个数,再用树状数组求逆序对. CODE: #include<iostream> #include<cstdi ...

  5. APP相关测试工具

    名称 描述   性能检测工具 用于对插件CPU.内存.闪退进行测试   接口测试工具 用于对插件本版本内的接口进行上线前的结构检测 自动比对差异   monkey测试工具 对主软件进行稳定性测试   ...

  6. Mysql 原理以及常见mysql 索引等

    ## 主键 超键 候选键 外键 (mysql数据库常见面试题) 数据库之互联网常用架构方案 数据库之互联网常用分库分表方案 分布式事务一致性解决方案 MySQL Explain详解 ## 数据库事务的 ...

  7. Linux设备驱动程序 之 后备高速缓存

    设备驱动程序常常会反复的分配很多相同大小的内存块:内核实现了后备高速缓存来对此进行支持,以反复的使用这些相同的内存块: 创建 Linux内核的高速缓存管理有时被称为“slab分配器”:因此,相关函数和 ...

  8. 黑马vue---61、为什么vue组件的data要是一个函数

    黑马vue---61.为什么vue组件的data要是一个函数 一.总结 一句话总结: 因为js中以函数为变量作用域,所以这样可以保证每个组件的数据不互相影响 二.why components data ...

  9. arcpy 获得是否为布局mxd.activeView

    arcpy 获得是否为布局mxd.activeView print mxd.activeView PAGE_LAYOUT mxd.pageSizePageSize(width=21.590043180 ...

  10. 分组背包---P1757 通天之分组背包

    P1757 通天之分组背包 题解 分组背包板子题 k组物品,每组之间相互矛盾,也就是一组里面只能选一个或者不选 分组背包其实和01背包差不多,就是多加一维枚举组数 f[k][j] 前k组中,体积不超过 ...