Balls and Boxes

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 260    Accepted Submission(s): 187

Problem Description
Mr. Chopsticks is interested in random phenomena, and he conducts an experiment to study randomness. In the experiment, he throws n balls into m boxes in such a manner that each ball has equal probability of going to each boxes. After the experiment, he calculated the statistical variance V as

V=∑mi=1(Xi−X¯)2m

where Xi is the number of balls in the ith box, and X¯ is the average number of balls in a box.
Your task is to find out the expected value of V.

 
Input
The input contains multiple test cases. Each case contains two integers n and m (1 <= n, m <= 1000 000 000) in a line.
The input is terminated by n = m = 0.
 
Output
For each case, output the result as A/B in a line, where A/B should be an irreducible fraction. Let B=1 if the result is an integer.
 
Sample Input
2 1
2 2
0 0
 
Sample Output
0/1
1/2

Hint

In the second sample, there are four possible outcomes, two outcomes with V = 0 and two outcomes with V = 1.

 
Author
SYSU
 
Source
 
Recommend
wange2014   |   We have carefully selected several similar problems for you:       
题意:给你n个球,m个盒子,每个球落入每个盒子的概率是等可能的,求方差的期望值。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <map>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define MM(a,b) memset(a,b,sizeof(a));
#define inf 0x7f7f7f7f
#define FOR(i,n) for(int i=1;i<=n;i++)
#define CT continue;
#define PF printf
#define SC scanf
const int mod=1000000007;
const int N=1e3+10; ll gcd(ll a,ll b)
{
if(b==0) return a;
else return gcd(b,a%b);
} int main()
{
ll n,m;
while(~scanf("%lld%lld",&n,&m)&&(n||m))
{
ll fenzi=n*(m-1),fenmu=m*m;
while(1)
{
ll k=gcd(fenzi,fenmu);
if(k==1) break;
fenzi/=k;fenmu/=k;
}
printf("%lld/%lld\n",fenzi,fenmu);
}
return 0;
}

 分析:比赛时就感觉是个什么分布,,但是学的很多又忘了,最后百度了一下,才发现可以二项分布做;

对于每个盒子,每个球落入其中的概率是p=1/m;

那么总共n个球p(x=k)=C(n,k)*p^k*(1-p)^(n-k),显然的二项分布;

二项分布数学期望E(x)=np(n是实验次数,p是每次试验球落入盒子的概率);

方差D(x)=np(1-p)

本题中D(x)=n/m*(1-1/m)=n*(m-1)/(m^2);

 然后因为每个盒子是平等的,方差又是描述数据的混乱程度,所以多个均等的盒子的方差与单个盒子方差
是一样的

hdu 5810 Balls and Boxes 二项分布的更多相关文章

  1. HDU 5810 Balls and Boxes(盒子与球)

     Balls and Boxes(盒子与球) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/O ...

  2. HDU 5810 Balls and Boxes (找规律)

    Balls and Boxes 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5810 Description Mr. Chopsticks is i ...

  3. HDU 5810 Balls and Boxes 数学

    Balls and Boxes 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5810 Description Mr. Chopsticks is i ...

  4. HDU 5810 Balls and Boxes

    n*(m-1)/(m*m) #pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio&g ...

  5. HDU 5810 Balls and Boxes ——(数学,概率,方差)

    官方题解看不太懂,参考了一些人的博客以后自己证明如下: 其中D(X)和E(X)的公式如下(参考自百度百科): 其中 p = 1 / m .(这是每一个单独事件发生的概率期望,在这里单独事件指的是一个球 ...

  6. hdu 5810:Balls and Boxes(期望)

    题目链接 这题似乎就是纯概率论.. E(V)=D(X_i)=npq (p=1/m,p+q=1) #include<bits/stdc++.h> using namespace std; t ...

  7. HDU5810 Balls and Boxes

    Balls and Boxes                                                                            Time Limi ...

  8. hdu-5810 Balls and Boxes(概率期望)

    题目链接: Balls and Boxes Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/O ...

  9. Codeforces Round #158 (Div. 2) C. Balls and Boxes 模拟

    C. Balls and Boxes time limit per test 1 second memory limit per test 256 megabytes input standard i ...

随机推荐

  1. django进阶版1

    目录 字段中choice参数 MTV与MVC模型 AJAX(*********) Ajax普通请求 Ajax传json格式化数据 Ajax传文件 序列化组件 Ajax+sweetalert 字段中ch ...

  2. ZOOKEEPER之WATCHER简介

    zookeeper通过watcher机制,可以实现数据的修改,删除等情况的监听 可以设置观察的操作:exists,getChildren,getData 可以触发观察的操作:create,delete ...

  3. java ftp retrieveFile 较大文件丢失内容

    今天发现用  如下方法下载一个2.2M的zip文件但是只下载了500K没有下载完全,但是方法  返回的却是true boolean org.apache.commons.net.ftp.FTPClie ...

  4. Java是面向对象的编程语言。它不仅吸收了C++语言的优点

    Java是面向对象的编程语言.它不仅吸收了C++语言的优点,而且摒弃了C++中难于理解的多继承和指针的概念.因此,Java语言具有功能强大.使用方便的特点.Java语言作为静态面向对象的编程语言的代表 ...

  5. html和css制作百度界面

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. 转载Linux常用命令

    转自:https://blog.csdn.net/deng_xj/article/details/88803148 Linux常用shell命令 [root@dengxj]#各项含义[用户名@计算机名 ...

  7. 前端imageBuffer设置图片src(后端返回二进制流图片)

    参考地址1:前端imageBuffer设置图片src(后端到前端直传buffer) 参考地址2:axios根据流生成图片 本质为buffer转base64 // 获取项目截图 getItemPic() ...

  8. 2.OR Mapping 介绍

    定义: ORM(Object Relational Mapping) -- 是一种为了解决面向对象与关系型数据库存在的互不匹配的现象的技术. 简单说:ORM是通过使用描述对象和数据库之间的映射的元数据 ...

  9. Use pkgsrc on ARM

    What is this page? This page describes how to use pkgsrc on ARM architecture with EABI support. I bo ...

  10. Delphi 动态链接库编程

    樊伟胜