题意是给出一棵树,每个点都有一个权值,从1开始,最多走k步,问能够经过的所有的点的权值和最大是多少(每个点的权值只能被累加一次)。

  考虑到一个点可以经过多次,设dp状态为dp[i][j][k],i表示当前从i出发,j表示最多走j步,k=0的话表示最后回到i点,否则不回到i点的子问题的答案。

  转移见代码。

  值得注意的是dfs中j循环的方向必须从大到小,因为如果从小到大,当前的j是从比其小的dp[u][j-t][...]更新过来的,而后者是根据走了v以后的更新过来的。换言之,如果从小到大,那么,走v贡献的权值就会被计算多次了,而题目中给的条件是,一个点的权值只能计算一次。拓展一下的话,如果一个点的权值可以被计算多次,那么应当从小到大循环j。

  不妨以下面这组数据为例可以找到区别:

  3 3
  1 100 1
  1 2
  1 3

  代码如下:

 #include <stdio.h>
#include <algorithm>
#include <string.h>
#include <vector>
using namespace std;
const int N = + ; int n,k;
int val[N];
vector<int> G[N];
int dp[N][N*][]; // 0 表示回到原地
void update(int & a,int b) {if(a < b) a = b;}
int dfs(int u,int fa)
{
for(int i=;i<G[u].size();i++)
{
int v = G[u][i];
if(v == fa) continue;
dfs(v,u);
// j必须从大到小(?)
for(int j=k;j>=;j--)
{
for(int t=;t<=j;t++)
{
// 最终都回到原地,那么左右都需要回到原地,此时需要多走两步 u->v & v->u
if(t >= ) update(dp[u][j][], dp[u][j-t][] + dp[v][t-][]);
// 最终不用回到原地,有只要左边或者右边一种选择不用回到原地即可
if(t >= ) update(dp[u][j][], dp[u][j-t][] + dp[v][t-][]);
update(dp[u][j][], dp[u][j-t][] + dp[v][t-][]);
}
}
}
} int main()
{
while(scanf("%d%d",&n,&k) == )
{
memset(dp,,sizeof dp);
for(int i=;i<=n;i++)
{
G[i].clear();
scanf("%d",val+i);
for(int j=;j<=k;j++) dp[i][j][] = dp[i][j][] = val[i];
}
for(int i=;i<n;i++)
{
int u,v;
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs(, -);
printf("%d\n",max(dp[][k][], dp[][k][]));
}
return ;
}

POJ 2486 Apple Tree ——(树型DP)的更多相关文章

  1. POJ 2486 Apple Tree ( 树型DP )

    #include <iostream> #include <cstring> #include <deque> using namespace std; #defi ...

  2. POJ 2486 Apple Tree [树状DP]

    题目:一棵树,每个结点上都有一些苹果,且相邻两个结点间的距离为1.一个人从根节点(编号为1)开始走,一共可以走k步,问最多可以吃多少苹果. 思路:这里给出数组的定义: dp[0][x][j] 为从结点 ...

  3. POJ 2486 Apple Tree(树形dp)

    http://poj.org/problem?id=2486 题意: 有n个点,每个点有一个权值,从1出发,走k步,最多能获得多少权值.(每个点只能获得一次) 思路: 从1点开始,往下dfs,对于每个 ...

  4. POJ 2486 Apple Tree (树形DP,树形背包)

    题意:给定一棵树图,一个人从点s出发,只能走K步,每个点都有一定数量的苹果,要求收集尽量多的苹果,输出最多苹果数. 思路: 既然是树,而且有限制k步,那么树形DP正好. 考虑1个点的情况:(1)可能在 ...

  5. poj 2486 Apple Tree(树形DP 状态方程有点难想)

    Apple Tree Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9808   Accepted: 3260 Descri ...

  6. POJ 2486 Apple Tree

    好抽象的树形DP......... Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6411 Accepte ...

  7. POJ 3321 Apple Tree(树状数组)

                                                              Apple Tree Time Limit: 2000MS   Memory Lim ...

  8. POJ 1947 - Rebuilding Roads 树型DP(泛化背包转移)..

    dp[x][y]表示以x为根的子树要变成有y个点..最少需要减去的边树... 最终ans=max(dp[i][P]+t)  < i=(1,n) , t = i是否为整棵树的根 > 更新的时 ...

  9. POJ 2486 Apple Tree(树形DP)

    题目链接 树形DP很弱啊,开始看题,觉得貌似挺简单的,然后发现貌似还可以往回走...然后就不知道怎么做了... 看看了题解http://www.cnblogs.com/wuyiqi/archive/2 ...

随机推荐

  1. Form key length limit 2048 exceeded ,提交数据时,数据的键过长 或者是上传文件过大

    在ASP.NET Core MVC中,文件的key 默认最大为2048,文件上传的最大上传文件默认为20MB,如果我们想上传一些比较大的文件,就不知道怎么去设置了,没有了Web.Config我们应该如 ...

  2. koa2中间件学习笔记

    洋葱模型 整个洋葱就是服务端程序app,每层洋葱皮都是一个中间件,传入requrest,经过各个中间件处理之后传出response. 新建中间件m1.js,m2.js koa-learn/middle ...

  3. nexus 匿名用户的问题。

    为了做到安全和不浪费我们自己的服务器资源,要绝对拒绝匿名用户进行访问: 1,不允许匿名用户访问 2,禁用匿名的账号 以下是这2点的设置图. ============================== ...

  4. echarts重写图例点击事件

    echarts version: 3.1.2 修改图例点击事件样例代码: 当第一次点击图例时,只显示点击的图例. 当还剩一个图例被取消选中后,自动全选中所有图例. var triggerAction ...

  5. es和redis cluster高可用扩容等等

    https://www.jianshu.com/p/ec465da21b4a https://www.cnblogs.com/hello-shf/p/11543468.html https://www ...

  6. jmeter分布式压力测试配置操作

    前提准备条件:1.主控机一台为master,ip地址:10.8.88.1772.负载机一台为slave, ip地址:10.8.88.1193.主控机和负载机都安装一样的JDK环境和jmeter版本.5 ...

  7. IDAPython实战项目——DES算法识别

    在CTF的逆向中我们需要的是找到加密的主函数,结合了yara的识别原理,通过对常量数组的引用的查找,一步步递归构建调用树.调用树根部就是可能的密码算法主函数. 由于这种办法需要常量分布于算法的各个步骤 ...

  8. vue.js 初步学习

    跟着b站上的视频来学 首先什么是vue.js? 跟着b站上视频来学:(o゚v゚)ノ <!DOCTYPE html> <html lang="en"> < ...

  9. 如何使用Metasploit进行汽车安全性测试

    前言 针对汽车的攻击和入侵是当前最前沿的领域和最热门的话题之一.随着自动驾驶汽车技术的发展,在未来这个领域将变得更加重要.作为汽车黑客快速发展的一部分,我最喜欢的黑客工具之一Metasploit也开发 ...

  10. 《数据结构与算法之美》 <06>栈:如何实现浏览器的前进和后退功能?

    浏览器的前进.后退功能,我想你肯定很熟悉吧? 当你依次访问完一串页面 a-b-c 之后,点击浏览器的后退按钮,就可以查看之前浏览过的页面 b 和 a.当你后退到页面 a,点击前进按钮,就可以重新查看页 ...