POJ 2486 Apple Tree ——(树型DP)
题意是给出一棵树,每个点都有一个权值,从1开始,最多走k步,问能够经过的所有的点的权值和最大是多少(每个点的权值只能被累加一次)。
考虑到一个点可以经过多次,设dp状态为dp[i][j][k],i表示当前从i出发,j表示最多走j步,k=0的话表示最后回到i点,否则不回到i点的子问题的答案。
转移见代码。
值得注意的是dfs中j循环的方向必须从大到小,因为如果从小到大,当前的j是从比其小的dp[u][j-t][...]更新过来的,而后者是根据走了v以后的更新过来的。换言之,如果从小到大,那么,走v贡献的权值就会被计算多次了,而题目中给的条件是,一个点的权值只能计算一次。拓展一下的话,如果一个点的权值可以被计算多次,那么应当从小到大循环j。
不妨以下面这组数据为例可以找到区别:
3 3
1 100 1
1 2
1 3
代码如下:
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <vector>
using namespace std;
const int N = + ; int n,k;
int val[N];
vector<int> G[N];
int dp[N][N*][]; // 0 表示回到原地
void update(int & a,int b) {if(a < b) a = b;}
int dfs(int u,int fa)
{
for(int i=;i<G[u].size();i++)
{
int v = G[u][i];
if(v == fa) continue;
dfs(v,u);
// j必须从大到小(?)
for(int j=k;j>=;j--)
{
for(int t=;t<=j;t++)
{
// 最终都回到原地,那么左右都需要回到原地,此时需要多走两步 u->v & v->u
if(t >= ) update(dp[u][j][], dp[u][j-t][] + dp[v][t-][]);
// 最终不用回到原地,有只要左边或者右边一种选择不用回到原地即可
if(t >= ) update(dp[u][j][], dp[u][j-t][] + dp[v][t-][]);
update(dp[u][j][], dp[u][j-t][] + dp[v][t-][]);
}
}
}
} int main()
{
while(scanf("%d%d",&n,&k) == )
{
memset(dp,,sizeof dp);
for(int i=;i<=n;i++)
{
G[i].clear();
scanf("%d",val+i);
for(int j=;j<=k;j++) dp[i][j][] = dp[i][j][] = val[i];
}
for(int i=;i<n;i++)
{
int u,v;
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs(, -);
printf("%d\n",max(dp[][k][], dp[][k][]));
}
return ;
}
POJ 2486 Apple Tree ——(树型DP)的更多相关文章
- POJ 2486 Apple Tree ( 树型DP )
#include <iostream> #include <cstring> #include <deque> using namespace std; #defi ...
- POJ 2486 Apple Tree [树状DP]
题目:一棵树,每个结点上都有一些苹果,且相邻两个结点间的距离为1.一个人从根节点(编号为1)开始走,一共可以走k步,问最多可以吃多少苹果. 思路:这里给出数组的定义: dp[0][x][j] 为从结点 ...
- POJ 2486 Apple Tree(树形dp)
http://poj.org/problem?id=2486 题意: 有n个点,每个点有一个权值,从1出发,走k步,最多能获得多少权值.(每个点只能获得一次) 思路: 从1点开始,往下dfs,对于每个 ...
- POJ 2486 Apple Tree (树形DP,树形背包)
题意:给定一棵树图,一个人从点s出发,只能走K步,每个点都有一定数量的苹果,要求收集尽量多的苹果,输出最多苹果数. 思路: 既然是树,而且有限制k步,那么树形DP正好. 考虑1个点的情况:(1)可能在 ...
- poj 2486 Apple Tree(树形DP 状态方程有点难想)
Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9808 Accepted: 3260 Descri ...
- POJ 2486 Apple Tree
好抽象的树形DP......... Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6411 Accepte ...
- POJ 3321 Apple Tree(树状数组)
Apple Tree Time Limit: 2000MS Memory Lim ...
- POJ 1947 - Rebuilding Roads 树型DP(泛化背包转移)..
dp[x][y]表示以x为根的子树要变成有y个点..最少需要减去的边树... 最终ans=max(dp[i][P]+t) < i=(1,n) , t = i是否为整棵树的根 > 更新的时 ...
- POJ 2486 Apple Tree(树形DP)
题目链接 树形DP很弱啊,开始看题,觉得貌似挺简单的,然后发现貌似还可以往回走...然后就不知道怎么做了... 看看了题解http://www.cnblogs.com/wuyiqi/archive/2 ...
随机推荐
- 监控SQL:通过SQL Server的DDL触发器来监控数据库结构的变化(1)
原文:监控SQL:通过SQL Server的DDL触发器来监控数据库结构的变化(1) 如果你要同步不同数据库之间的数据,首先会想到的是数据库复制技术,但如果让你同步数据库的结构,你会想到什么呢? 下面 ...
- Asp.Net Core 存储Cookie 的问题
Asp.Net Core 2.1生成的项目模板默认实现了<欧洲常规数据保护法规 (GDPR)>支持.这就使得我们的程序要想成功的存储除了用户身份以外的cookie通常是需要用户同意的. 3 ...
- 树节点递归删除--service层
@Service public class ContentCategoryServiceImpl extends BaseServiceImpl<ContentCategory> impl ...
- Myeclipse debug 调式java 报错,留做后面解决!
FATAL ERROR in native method: JDWP No transports initialized, jvmtiError=AGENT_ERROR_TRANSPORT_INIT( ...
- fcrackzip破解zip密码
kail系统里有fcrackzip工具,可以对设置密码的压缩包zip直接进行破解,不用字典,直接进行暴力破解. fcrackzip 所用到的参数介绍如下:-b 表示暴力破解-c 表示暴力破解中使用的字 ...
- linux 欢迎界面
开博第一篇文章,简单地写一篇linux欢迎界面吧 可以通过修改/etc/motd 或/etc/issue两个文件实现修改登录显示 区别:/etc/motd:( 登录成功才会显示 ) /etc/issu ...
- 安装sass时遇到Failed to build gem native extension
错误信息 执行命令: sudo gem install sass时遇到下面的错误信息 Building native extensions. This could take a while... ER ...
- iis深入学习资源
iis站点:https://www.iis.net/overview/reliability/richdiagnostictools 感兴趣可以深入学习下iis
- WebMvcConfig
package cn.xx.yy; import java.util.ArrayList;import java.util.HashMap;import java.util.List;import j ...
- bcb ole拖拽功能的实现
最近项目中用到了OLE 拖拽功能 和BCB 一个Form的Drag 不同的是,只有实现了OLE 拖拽才能,从其他程序拖拽数据到Form 下面的代码实现了,同HTML网页拖拽到Form时,Form获得H ...