本文转载自互联网,侵删

 

与前面介绍的锁和volatile相比较,对final域的读和写更像是普通的变量访问。对于final域,编译器和处理器要遵守两个重排序规则:

  1. 在构造函数内对一个final域的写入,与随后把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序。
  2. 初次读一个包含final域的对象的引用,与随后初次读这个final域,这两个操作之间不能重排序。

下面,我们通过一些示例性的代码来分别说明这两个规则:

public class FinalExample {
int i; //普通变量
final int j; //final变量
static FinalExample obj; public void FinalExample () { //构造函数
i = 1; //写普通域
j = 2; //写final域
} public static void writer () { //写线程A执行
obj = new FinalExample ();
} public static void reader () { //读线程B执行
FinalExample object = obj; //读对象引用
int a = object.i; //读普通域
int b = object.j; //读final域
}
}

这里假设一个线程A执行writer ()方法,随后另一个线程B执行reader ()方法。下面我们通过这两个线程的交互来说明这两个规则。

写final域的重排序规则

写final域的重排序规则禁止把final域的写重排序到构造函数之外。这个规则的实现包含下面2个方面:

  • JMM禁止编译器把final域的写重排序到构造函数之外。
  • 编译器会在final域的写之后,构造函数return之前,插入一个StoreStore屏障。这个屏障禁止处理器把final域的写重排序到构造函数之外。

现在让我们分析writer ()方法。writer ()方法只包含一行代码:finalExample = new FinalExample ()。这行代码包含两个步骤:

  1. 构造一个FinalExample类型的对象;
  2. 把这个对象的引用赋值给引用变量obj。

假设线程B读对象引用与读对象的成员域之间没有重排序(马上会说明为什么需要这个假设),下图是一种可能的执行时序:

在上图中,写普通域的操作被编译器重排序到了构造函数之外,读线程B错误的读取了普通变量i初始化之前的值。而写final域的操作,被写final域的重排序规则“限定”在了构造函数之内,读线程B正确的读取了final变量初始化之后的值。

写final域的重排序规则可以确保:在对象引用为任意线程可见之前,对象的final域已经被正确初始化过了,而普通域不具有这个保障。以上图为例,在读线程B“看到”对象引用obj时,很可能obj对象还没有构造完成(对普通域i的写操作被重排序到构造函数外,此时初始值2还没有写入普通域i)。

读final域的重排序规则

读final域的重排序规则如下:

  • 在一个线程中,初次读对象引用与初次读该对象包含的final域,JMM禁止处理器重排序这两个操作(注意,这个规则仅仅针对处理器)。编译器会在读final域操作的前面插入一个LoadLoad屏障。

初次读对象引用与初次读该对象包含的final域,这两个操作之间存在间接依赖关系。由于编译器遵守间接依赖关系,因此编译器不会重排序这两个操作。大多数处理器也会遵守间接依赖,大多数处理器也不会重排序这两个操作。但有少数处理器允许对存在间接依赖关系的操作做重排序(比如alpha处理器),这个规则就是专门用来针对这种处理器。

reader()方法包含三个操作:

  1. 初次读引用变量obj;
  2. 初次读引用变量obj指向对象的普通域j。
  3. 初次读引用变量obj指向对象的final域i。

现在我们假设写线程A没有发生任何重排序,同时程序在不遵守间接依赖的处理器上执行,下面是一种可能的执行时序:

在上图中,读对象的普通域的操作被处理器重排序到读对象引用之前。读普通域时,该域还没有被写线程A写入,这是一个错误的读取操作。而读final域的重排序规则会把读对象final域的操作“限定”在读对象引用之后,此时该final域已经被A线程初始化过了,这是一个正确的读取操作。

读final域的重排序规则可以确保:在读一个对象的final域之前,一定会先读包含这个final域的对象的引用。在这个示例程序中,如果该引用不为null,那么引用对象的final域一定已经被A线程初始化过了。

如果final域是引用类型

上面我们看到的final域是基础数据类型,下面让我们看看如果final域是引用类型,将会有什么效果?

请看下列示例代码:

public class FinalReferenceExample {
final int[] intArray; //final是引用类型
static FinalReferenceExample obj; public FinalReferenceExample () { //构造函数
intArray = new int[1]; //1
intArray[0] = 1; //2
} public static void writerOne () { //写线程A执行
obj = new FinalReferenceExample (); //3
} public static void writerTwo () { //写线程B执行
obj.intArray[0] = 2; //4
} public static void reader () { //读线程C执行
if (obj != null) { //5
int temp1 = obj.intArray[0]; //6
}
}
}

这里final域为一个引用类型,它引用一个int型的数组对象。对于引用类型,写final域的重排序规则对编译器和处理器增加了如下约束:

  1. 在构造函数内对一个final引用的对象的成员域的写入,与随后在构造函数外把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序。

对上面的示例程序,我们假设首先线程A执行writerOne()方法,执行完后线程B执行writerTwo()方法,执行完后线程C执行reader ()方法。下面是一种可能的线程执行时序:

在上图中,1是对final域的写入,2是对这个final域引用的对象的成员域的写入,3是把被构造的对象的引用赋值给某个引用变量。这里除了前面提到的1不能和3重排序外,2和3也不能重排序。

JMM可以确保读线程C至少能看到写线程A在构造函数中对final引用对象的成员域的写入。即C至少能看到数组下标0的值为1。而写线程B对数组元素的写入,读线程C可能看的到,也可能看不到。JMM不保证线程B的写入对读线程C可见,因为写线程B和读线程C之间存在数据竞争,此时的执行结果不可预知。

如果想要确保读线程C看到写线程B对数组元素的写入,写线程B和读线程C之间需要使用同步原语(lock或volatile)来确保内存可见性。

为什么final引用不能从构造函数内“逸出”

前面我们提到过,写final域的重排序规则可以确保:在引用变量为任意线程可见之前,该引用变量指向的对象的final域已经在构造函数中被正确初始化过了。其实要得到这个效果,还需要一个保证:在构造函数内部,不能让这个被构造对象的引用为其他线程可见,也就是对象引用不能在构造函数中“逸出”。为了说明问题,让我们来看下面示例代码:

public class FinalReferenceEscapeExample {
final int i;
static FinalReferenceEscapeExample obj; public FinalReferenceEscapeExample () {
i = 1; //1写final域
obj = this; //2 this引用在此“逸出”
} public static void writer() {
new FinalReferenceEscapeExample ();
} public static void reader {
if (obj != null) { //3
int temp = obj.i; //4
}
}
}

假设一个线程A执行writer()方法,另一个线程B执行reader()方法。这里的操作2使得对象还未完成构造前就为线程B可见。即使这里的操作2是构造函数的最后一步,且即使在程序中操作2排在操作1后面,执行read()方法的线程仍然可能无法看到final域被初始化后的值,因为这里的操作1和操作2之间可能被重排序。实际的执行时序可能如下图所示:

从上图我们可以看出:在构造函数返回前,被构造对象的引用不能为其他线程可见,因为此时的final域可能还没有被初始化。在构造函数返回后,任意线程都将保证能看到final域正确初始化之后的值。

final语义在处理器中的实现

现在我们以x86处理器为例,说明final语义在处理器中的具体实现。

上面我们提到,写final域的重排序规则会要求译编器在final域的写之后,构造函数return之前,插入一个StoreStore障屏。读final域的重排序规则要求编译器在读final域的操作前面插入一个LoadLoad屏障。

由于x86处理器不会对写-写操作做重排序,所以在x86处理器中,写final域需要的StoreStore障屏会被省略掉。同样,由于x86处理器不会对存在间接依赖关系的操作做重排序,所以在x86处理器中,读final域需要的LoadLoad屏障也会被省略掉。也就是说在x86处理器中,final域的读/写不会插入任何内存屏障!

JSR-133为什么要增强final的语义

在旧的Java内存模型中 ,最严重的一个缺陷就是线程可能看到final域的值会改变。比如,一个线程当前看到一个整形final域的值为0(还未初始化之前的默认值),过一段时间之后这个线程再去读这个final域的值时,却发现值变为了1(被某个线程初始化之后的值)。最常见的例子就是在旧的Java内存模型中,String的值可能会改变(参考文献2中有一个具体的例子,感兴趣的读者可以自行参考,这里就不赘述了)。

为了修补这个漏洞,JSR-133专家组增强了final的语义。通过为final域增加写和读重排序规则,可以为java程序员提供初始化安全保证:只要对象是正确构造的(被构造对象的引用在构造函数中没有“逸出”),那么不需要使用同步(指lock和volatile的使用),就可以保证任意线程都能看到这个final域在构造函数中被初始化之后的值。

参考文献

  1. Java Concurrency in Practice

  2. JSR 133 (Java Memory Model) FAQ

  3. Java Concurrency in Practice

  4. The JSR-133 Cookbook for Compiler Writers

Intel® 64 and IA-32 ArchitecturesvSoftware Developer’s Manual Volume 3A: System Programming Guide, Part 1

更多内容请关注微信公众号【Java技术江湖】

一位阿里 Java 工程师的技术小站。作者黄小斜,专注 Java 相关技术:SSM、SpringBoot、MySQL、分布式、中间件、集群、Linux、网络、多线程,偶尔讲点Docker、ELK,同时也分享技术干货和学习经验,致力于Java全栈开发!(关注公众号后回复”Java“即可领取 Java基础、进阶、项目和架构师等免费学习资料,更有数据库、分布式、微服务等热门技术学习视频,内容丰富,兼顾原理和实践,另外也将赠送作者原创的Java学习指南、Java程序员面试指南等干货资源)

Java并发指南5:JMM中的final关键字解析的更多相关文章

  1. Java中的final关键字解析

    一.final关键字的基本用法 1.修饰类   当用final修饰一个类时,表明这个类不能被继承.注意: final类中的成员变量可以根据需要设为final, final类中的所有成员方法都会被隐式地 ...

  2. JAVA并发编程:相关概念及VOLATILE关键字解析

    一.内存模型的相关概念 由于计算机在执行程序时都是在CPU中运行,临时数据存在主存即物理内存,数据的读取和写入都要和内存交互,CPU的运行速度远远快于内存,会大大降低程序执行的速度,于是就有了高速缓存 ...

  3. Java并发指南14:JUC中常用的Unsafe和Locksupport

    本文转自网络,侵删 本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查看 https://github.com/h2pl/Java-Tutoria ...

  4. Java并发(十九):final实现原理

    final在Java中是一个保留的关键字,可以声明成员变量.方法.类以及本地变量. 一旦你将引用声明作final,你将不能改变这个引用了,编译器会检查代码,如果你试图将变量再次初始化的话,编译器会报编 ...

  5. 浅析Java中的final关键字(转载)

    自http://www.cnblogs.com/dolphin0520/p/3736238.html转载 一.final关键字的基本用法 在Java中,final关键字可以用来修饰类.方法和变量(包括 ...

  6. 关于Java中的final关键字

    Java中的final关键字是用来限制用户行为的,说白了,就是用来限制我们这些程序员的.final可以用来修饰:变量.方法.类. 1)Java final variable final用来修饰变量时, ...

  7. 深入理解Java中的final关键字

    Java中的final关键字非常重要,它可以应用于类.方法以及变量.这篇文章中我将带你看看什么是final关键字?将变量,方法和类声明为final代表了什么?使用final的好处是什么?最后也有一些使 ...

  8. 浅析Java中的final关键字

    浅析Java中的final关键字 谈到final关键字,想必很多人都不陌生,在使用匿名内部类的时候可能会经常用到final关键字.另外,Java中的String类就是一个final类,那么今天我们就来 ...

  9. (转)深入理解Java中的final关键字

    转自:http://www.importnew.com/7553.html Java中的final关键字非常重要,它可以应用于类.方法以及变量.这篇文章中我将带你看看什么是final关键字?将变量,方 ...

随机推荐

  1. java封装数据类型——Integer 缓存策略验证

    上一篇学习 Integer 类型源码,知道了它使用缓存策略,默认对 [-128, 127] 范围的对象进行类加载时自动创建缓存. Integer 源码学习:https://www.cnblogs.co ...

  2. linux内核过高导致vm打开出错修复脚本

    #!/bin/bashVMWARE_VERSION=workstation-15.1.0TMP_FOLDER=/tmp/patch-vmwarerm -fdr $TMP_FOLDERmkdir -p ...

  3. springboot2.0介绍1

    SpringBoot 一. Spring介绍 1.1.SpringBoot简介 在您第1次接触和学习Spring框架的时候,是否因为其繁杂的配置而退却了?在你第n次使用Spring框架的时候,是否觉得 ...

  4. Vue路由相关配置

    什么是路由? 1.在以前页面跳转使用的是超链接a标签或者js location.href,而路由是跳转切换组件的跳转方式 2.路由就是监听url的改变并提供相对应的组件用于展示 3.vue-route ...

  5. S2-033、S2-037

    前言 S2-033漏洞和S2-032类似,也是由于开启了动态方法调用,action mapper中的执行的方法名可控,导致了ognl表达式注入. 正文 Rest插件中获取action mapper是用 ...

  6. ASTA存在的问题

    1.客户端执行一个查询,提示xx字段不存在.跟踪代码,原来服务端ADOQuery设置BCD返回,客户端AstaClientDataSet在设计期加了字段是ftFloat类型,这两个类型不同产生的错误. ...

  7. vue嵌套数据多层级里面的数据不自动更新渲染dom

    可以尝试手动调用更新 主要代码: vm.$forceUpdate() 官网

  8. Image Processing and Analysis_8_Edge Detection:Edge and line oriented contour detection State of the art ——2011

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  9. 利用setuptools发布Python程序到PyPI,为Python添砖加瓦

    pip install的东西从哪里来的? 从PyPI (Python Package Index)来的,官网是:  https://pypi.python.org/pypi/执行pip install ...

  10. 如何利用while语句根据用户输入要求打印菱形图案

    需求:如何利用while语句根据用户输入要求打印菱形图案 diamond.py代码如下: x=int(input('Please input number: ')) i=1 j=1 while i&l ...